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ABSTRACT

In this talk we consider the numerical solution of shape optimization problems. In particular, shape
optimization is often used as contour refinement step, for instance after finding the rough design struc-
ture of an workpiece by topology optimization methods, see Bendsoe and Sigmund [1], Lewinski and
Sokolowski [7], Sokolowski and Zochowski [8].

Based on a first and second order shape calculus (see e.g., Sokolowski and Zolesio [9], Delfour and
Zolesio [2]), we investigate first and second order optimality conditions. We will explain the two-norm
discrepancy that arises from the mapping properties of the shape Hessian. The shape Hessian is a
pseudodifferential operator which acts on the shape variation. It is a continuous bilinear form not only
in the space arising from shape calculus but also with respect to an essentially weaker norm. Strict
coercivity in the weaker space is needed to ensure local optimality, provided that a refined second order
remainder estimate is satisfied.

Based on the coercivity of the shape Hessian, we can classify elliptic shape optimization problems as
being either well-posed or ill-posed problems, [3−5]. Moreover, we present a concept for proving exis-
tence and convergence of approximate shapes in case of well-posedness, [6]. Especially this comprises
the order of convergence of the shape approximation.

In the second part of the talk, we discuss the efficient numerical solution of elliptic shape optimiza-
tion problems. In particular, the use of the Hadamard representation of the shape gradient will avoid
computation of either shape sensitivities of the state or/and so called mesh sensitivities, both known as
beeing computational expensive. For the numerical solution of the state equation by boundary element
methods, we present a wavelet Galerkin method of optimal complexity. It is shown that combination of
boundary element methods and boundary integral representations of shape derivatives may result in an
algorithm that works completely on the boundary. That is, no further information is needed from inside



the domain. Furthermore, we sketch the coupling of finite element and boundary element methods for
other objectives like the L2-tracking of the state on a compact, but fixed subregion of the unknown
domain.
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