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ABSTRACT 

The buckling of a rectangular plate loaded along the two parallel simply-supported opposite 
edges by the linearly distributed in-plane load is considered in this paper (see Fig.1 (a)). 
Under the action of this load the plate is subjected to the in-plane pure bending. The 
corresponding buckling solutions based on the use of double trigonometric series were 
obtained for simply supported isotropic [1-2] and orthotropic [3-5] plates. It appears, to the 
authors’ knowledge, that no research work was reported for the buckling analysis of the plate 
under consideration having two parallel edges simply supported with no loads applied on the 
remaining free edges (SSFF plate).  
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     Fig.1. Plate under in-plane pure bending (a), coefficient, φ  and  crη , as a function of angle 
                aspect ratio c for composite plate (b). 
 

baThe buckling equation for the orthotropic × plate referred to the Cartesian coordinate 
frame (see Fig.1) and loaded along the two parallel simply supported opposite 
edges( ) by the linearly distributed in-plane load is: 

),( yx
ax ,0= )/21(0 byNN −−=x

 

( )     (1) 021)2(2 224
22

224
3312

44
11 ∂∂∂ ∂ + ∂ ∂ 4 =+ −∂++∂∂ xwbyNywDyxwDDxwD

),( yxww = D 12D 22D 33Dwhere  is the lateral deflection, , , ,  are the flexural stiffnesses of 
the laminated plate [6], N is the maximum value of the pre-buckling distributed load.  
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The boundary conditions are as follows: 0=w
/3 dyw

,  for , 
and ,  for . 
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Using the Levy solution form which satisfies the boundary conditions for simply supported 
edges , the equation (1) is reduced to the ordinary differential equation. The latter is 
approximated by the finite differences as follows:  
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where i is the mesh point, wi is the plate deflection at the point i, 11 2 +− +−= iiii wwwA , 
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and 2211
2 DDNb=η  is the buckling coefficient. Applying Eq. (2) to all the mesh points 

and taking into account the finite difference approximations of the boundary conditions, we 
obtain the following set of equations 
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where, , T

kwww }...,,,{ 21=W 2422 2 απβαπ BAED nn +−= , T is the diagonal matrix with 
the main diagonal elements , E is the unity matrix, and A and B  are the square 
tridiagonal and band diagonal matrices of the numerical coefficients in the expressions for  
and respectively. Solution of the eigenvalue problem (3) yields the critical buckling 

coefficient 
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η with the corresponding critical load 2
2211 / bDDN crcr η= . The problem was 

solved for the isotropic plate and the laminated CFRP (carbon fiber reinforced plastic) plate 
composed from the orthotropic layers with symmetrical reinforcement orientation φ± . 
Coefficient 1/ E  ( 1

o90 and
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crη 22, A  1A re the stiffness coefficients and 1E  is the modulus 
elasticity of unidirectional composite [6]) was calculated for various combinations of the 
reinforcement angle o0 ≤  the aspect ratio 1
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ee Fig. 1 (b)). It 
was found, that for each value of c there is a corresponding angle  that delivers the 
maximum value of the critical buckling coefficient. For example, for the square 
( ) CFRP plate. It has been shown, that the optimum angle of reinforcement 
(corresponding to the maximum critical load) tends to the value of 22o with the increase of the 
aspect ratio c. The effect of the geometric and elastic parameters of the plates on the shape of 
corresponding buckling modes was also analysed.  
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