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A high order accurate finite difference method for adaptive grids
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ABSTRACT

High-order accurate finite difference methods (HOFDM) have been proven [1] highly efficient for
Cauchy problems. The usage of HOFDM for more realistic problems have been delayed by two major
obstacles: 1) To device a stable boundary treatment, and 2) To handle complex domains.

The first obstacle was resolved by the combination of high order accurate summation by parts (SBP)
operators [2,3] and the Simultaneous Approximation Term (SAT) method [4] for implementing the
physical boundary conditions. The second obstacle was partly resolved [5] by employing the SAT tech-
nique to couple problems solved on multi-block curvilinear grids, that were allowed to have a non
smooth matching of gridlines.

We will present newly derived high order accurate interpolation operators that allow us to couple prob-
lems on non-matching curvilinear multi-block grids, that are allowed to have a two to one ratio of
unknowns at the interface. This will allow us to construct adaptively refined meshes, to resolve com-
plex geometrical features more efficiently. The strength of this technique is that we can prove that the
interface coupling is stable and conservative, and preserves design order of accuracy.

As a validation test we consider a 2-block coupling of the 2-D compressible Euler equations. The
analytic Euler vortex [6] is imposed as initial data close to the internal boundary at x=5, see Figure 1
. The vortex propagate with the free stream speed to the right. The solution (here density) at t = 1,
using 812 and 412 grid points in the left and right domains respectively is shown in Figure 1. We use
a 4th order accurate SBP operator (having a 6th order accurate interior stencil and a 3rd order accurate
boundary closure) and the standard 4th order accurate Runge-Kutta method to integrate in time. We
stress that the interface coupling technique is not restricted to any particular PDE, as will be illustrated
at the conference.



Figure 1: The vortex (density), at t = 1. The left (fine) block uses 812 grid points. Ma = 0.7.

N log(ρ) q(ρ) log(l2(u)) q(u) log(l2(v)) q(v) log(l2(E)) q(E)

1012 -5.73 0.00 -5.27 0.00 -4.54 0.00 -4.28 0.00
2012 -6.96 4.10 -6.23 3.21 -5.92 4.57 -5.58 4.35
3012 -7.79 4.71 -6.94 4.04 -6.76 4.76 -6.43 4.82
4012 -8.38 4.75 -7.48 4.30 -7.38 4.98 -7.03 4.76

Table 1: l2-errors and convergence rates q for the unknowns (density, velocities and energy). The errors
are sampled at t = 1. N denote the number of grid points in the left (fine-grid) domain. Ma = 0.3.

REFERENCES
[1] H.-O. Kreiss and J. Oliger. “Comparison of accurate methods for the integration of hyper-

bolic equations ”. Tellus XXIV, Vol. 3, 1972.
[2] H.-O. Kreiss and G. Scherer. Finite element and finite difference methods for hyperbolic

partial differential equations, Mathematical Aspects of Finite Elements in Partial Differen-
tial Equations, Academic Press, New York, 1974.

[3] K. Mattsson and J. Nordström. “Summation by parts operators for finite difference approx-
imations of second derivatives”. J. Comp. Phys., Vol. 199, 503–540, 2004.

[4] M. H. Carpenter and D. Gottlieb and S. Abarbanel. “Time-stable boundary conditions for
finite-difference schemes solving hyperbolic systems: Methodology and application to high-
order compact schemes”. J. Comp. Phys., Vol. 111, 220–236, 1994.

[5] J. Nordström and M.H Carpenter. “High-Order Finite Difference Methods, Multidimen-
sional Linear Problems, and Curvilinear Coordinates”. J. Comp. Phys., Vol. 173, 149–174,
2001.
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