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ABSTRACT 

In general, performance-based design implies finding design parameters which minimize a 
given objective (for example, total cost), while satisfying minimum reliability levels in 
each of several specified performance requirements or limit states. In the context of 
earthquake engineering, the problem involves consideration of random variables related to 
the ground motion as well as to the structure itself. The evaluation of structural responses 
involves the application of a nonlinear dynamic analysis. Responses of particular interest 
are maximum actions or maximum drifts or deformations, as well as the local or global 
damage accumulated during the earthquake. Since it is not possible to obtain explicit 
relationships between the intervening variables and the responses, a discrete response 
database is obtained deterministically for different combinations of the intervening 
random variables and design parameters. These results can then be conveniently 
represented with a response surface using neural networks. For each response, the 
variability resulting from different earthquake records is accommodated by implementing 
two networks: one for the mean response and another for the standard deviation of the 
response over the records. The input layers to these networks contain the remaining 
random variables and design parameters. 
Using the mean and standard deviations, the variability of a given response over the 
records is assumed to follow a lognormal distribution. When the calculated response is a 
damage index with a collapse upper bound of 1.0, the corresponding distribution used is a 
beta distribution with a corresponding upper bound of 1.0. The evaluation of the reliability 
level achieved in each limit state can then be efficiently implemented trough Montecarlo 
simulation, using the neural networks as substitutes for the dynamic analysis 
corresponding to different combinations of the intervening variables. In the optimization, 
the minimization of the objective function is achieved by a gradient-free algorithm. First, 
design parameters are randomly selected within their respective bounds, and for each 
combination the achieved reliability is calculated. The objective function is calculated for 
those combinations that satisfy the minimum reliability targets, choosing the combination 
which results in the minimum objective. This provides an anchor around which other 
combinations are randomly chosen within a sphere. The objective is evaluated for each of 
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those which satisfy the reliability constraints, and the combination corresponding to the 
minimum is chosen as the new anchor. The process is repeated until all feasible 
combinations within the sphere result in objective functions greater than or equal to that of 
the corresponding anchor. In order to account for local minima, the process is repeated 
several cycles for different initial random choices, adopting as the final result the 
minimum among the minima.   
As an application of the approach, this work considers the optimization of a portal 
reinforced concrete frame of 6 stories and 3 bays. Structural random variables include the 
mass per unit length of each story, the characteristic concrete strength, the steel 
reinforcement ratios, and the confinement pressure provided by the lateral reinforcement. 
Design parameters are: d1: beam depth; d2: depth of column cross-section; d3: beam 
longitudinal steel reinforcement ratio; d4: beam longitudinal steel reinforcement ratio at 
the supports; d5: longitudinal steel reinforcement ratio for the columns. Random variables 
associated with the ground motion are the peak acceleration and the central frequency for 
the soil filter. The records used were artificially developed, but consistent with the 
seismicity of the city of Mendoza, Argentina.  Using experimental design, a total of 900 
combinations of the random variables were developed. For each combination, the 
nonlinear dynamic analysis was run for each of 20 records, obtaining the responses of 
interest to be represented by neural networks. The dispersion in each of the networks’ 
regression was taken into account as an additional random variable, to account for the 
differences between the dynamic analyses and the networks’ predictions.  The objective 
function is the total structural cost, given by the original cost C0 plus the cost of repairs C1 
following damage due to a future earthquake. V(dk) is the concrete volume (function of the 
design parameters dk), with a unit cost Cc . Similarly, P(dk) is the steel weight, with a unit 
cost Cs. If DIG is the global damage index, also function of dk, ν the arrival rate of the 
earthquakes, r the interest rate, DIGfC the repair cost given a damage DIG and  DIGC1 the 
corresponding present cost, then C0 and C1 are obtained from 
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in which is the probability density function for the damage DIG. Three 
performance levels were considered, operational, life safety and collapse, with respective 
minimum annual failure probabilities of  Pf

)(DIGf DIG

anual = 2x10-2;  Pfanual = 2x10-3; and Pfanual = 
7x10-3. Each levels, in turn, was defined by limit states corresponding to limiting 
interstory drifts and damage indices. Optimization results are shown in the next Table. 

Results d1 (cm) d2 (cm) d3 d4 d5 C0 (US$) C1(US$) Total Cost 
(US$) 

Cycle 1 59.18 53.73 0.01117 0.01211 0.02124 10199 1550 11749 

Cycle 2 62.65 58.15 0.00904 0.01287 0.01747 10410 1415 11825 

Cycle 3 59.95 50.13 0.01024 0.01145 0.02624 10238 1392 11631 

The results for the different cycles show good agreement, and that the “optimum” total 
cost is relatively insensitive to small differences in the design parameters. However, 
accounting for the cost of damage repair results in the best solution not being that for the 
higher initial cost.  
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