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ABSTRACT

The introduction of uncertainties inherent to physical models is a key question when one tries to obtain
reliable numerical predictions. Stochastic Galerkin methods [1,2,3] have become a significant tool for
solving stochastic partial differential equations (SPDE). These methods are based on strong mathemat-
ical bases, which allow deriving a priori and a posteriori error estimators. They lead to very accurate
and reliable approximate solutions. However, when a fine discretization is required at deterministic
and/or stochastic levels, these methods need for the resolution of huge systems of equations. The use of
classical solvers then generally induces very high computational costs.

A rising tendency in computational stochastic mechanics consists in building low dimensional approx-
imation spaces in order to drastically reduce the size of discretized problems. A reduced basis of de-
terministic functions {Ui} or random variables{λi} is said optimal if, for a given accuracy, it leads to
the lowest order M of decomposition of the solution u ≈ ∑M

i=1 λiUi. Optimality clearly depends on
the “measure of accuracy”. For example, when measuring accuracy with the natural norm in a tensor
product Hilbert space, the optimal decomposition appears to be the Karhunen-Loeve decomposition (or
classical spectral decomposition) of the solution. Of course, this decomposition can not be obtained
without knowing the solution. However, different numerical strategies have been proposed in order to
obtain an approximation of it [2,4]. This approximate decomposition allows the obtention of quasi-
optimal reduced deterministic (or stochastic) bases on which the initial fine problem can be solved.

Recently, a new method has been proposed for building an optimal decomposition without a priori
knowing the solution nor an approximation of it [5]. This method, called Generalized Spectral Decom-
position method (GSD), starts with another definition of optimality and require the development of
ad-hoc algorithms for the automatic construction of the decomposition.

The GSD method has been initially derived for a class of elliptic SPDE [5]. In this presentation, the
GSD method is extended to a wider class of stochastic problems. The GSD is defined by classical
Galerkin orthogonality criteria. Reduced bases are solutions of invariant subspace problems (or fixed
point problems on Grassmann manifolds [6]), which are interpreted as eigen-like problems. This in-
terpretation allows to derive new efficient algorithms to build the generalized spectral decomposition.



These are inspired from classical algorithms for capturing dominant eigenspaces of linear operators.
The proposed algorithms leads to significant computational savings by separating the resolution of a
few deterministic problems and a few stochastic problems on reduced deterministic bases.

The proposed strategy offers a quite general framework for solving a large class of stochastic partial
differential equations. Numerical examples illustrate the generality of the method and the efficiency of
the proposed algorithms, which are compared to classical resolution techniques and also to the previous
GSD algorithms proposed in [5].
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