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ABSTRACT 

The non-polynomial characteristic of typical meshfree shape functions like moving least 
square (MLS) or reproducing kernel (RK) approximation makes it necessary using 
higher order Gauss integration (GI) to accurately evaluate the strain energy in elasticity 
problems where the 1st order derivatives of shape functions are involved. This issue 
becomes more prominent when dealing with the problems of thin beams and plates 
where the 2nd order derivatives of shape function are required to formulate the stiffness. 
To improve the computational efficiency methods have been proposed by using 
stabilized nodal integration. In [1] a least squares stabilization was proposed to the 
nodally integrated weak form and in [2] the stabilized conforming nodal integration 
(SCNI) was developed via a strain smoothing method. The SCNI approach has been 
further extended to shear deformable beams, plates and shells [3-5]. It is noted that the 
SCNI type stabilization methods were formulated to meet the so-called integration 
constraints in elasticity and plate bending, and thus pass linear and pure bending tests. 
However the aforementioned stabilization methods were developed for the 2nd order 
differential equations. This work aims to present a Hermite reproducing kernel (HRK) 
meshfree approximation and a corresponding stabilization method for in higher order 
differential equations such as thin beams and plates. 

 
Figure 1 Hermite reproducing kernel shape functions for deflection and rotations 

Under the present approach, the HRK approximation is constructed by including the 
rotations into the approximation of deflection and then imposing the consistency 
conditions [6]. In this approximation the Kirchhoff mode reproducing conditions are 
enforced to exactly reproduce the fundamental plate bending deformation modes. It 



 

turns out that the proposed HRK shape functions as shown in Fig. 1 exhibit a better 
kernel stability compared to that of the standard reproducing kernel shape functions. It 
is also shown that the HRK approximation has better approximation accuracy than that 
based on the standard RK approximation. Since the weak form of thin plates involves 
the 2nd order derivatives, accurate numerical integration of the discrete stiffness matrix 
requires very intensive computational effort. Numerical tests also demonstrate that a 
direct employment of previous SCNI methodology or lower order Gauss integration 
rules are not enough to yield a stable meshfree algorithm for the solutions of thin beams 
and plates. Consequently a sub-domain stabilized conforming integration (SSCI) is 
developed to efficiently and accurately integrate the weak forms of thin beams and 
plates, and meet the stability requirement at the same time. Due to its conforming nature 
and the use of strain smoothing technique, the proposed formulation with HRK 
approximation and SSCI integration scheme can meet the integration constraint 
associated with bending and thus reproduce pure bending mode under arbitrary particle 
discretization patterns. Various benchmark examples, i.e., the clamped square plate 
problem as shown from Fig. 2, demonstrate that the proposed method performs 
superiorly compared to the higher order Gauss integration-based meshfree formulation. 

 
Figure 2 Solution comparisons for the clamped square plate under center load 
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