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ABSTRACT

Steady transonic flows through channels so narrow that the classical boundary layer approach fails are
considered. As a consequence the properties of the inviscid core and the viscosity dominated boundary
layer regions adjacent to the channel walls can no longer be determined in subsequent steps but have to
be calculated simultaneously, thus allowing viscous inviscid interactions to take place locally which are
triggered, e.g., by the formation of a weak normal shock. Under the requirement that the channel is so
narrow that the flow outside the viscous wall layers becomes one-dimensional to the leading order the
resulting interaction problem is formulated, by using asymptotic analysis for large Reynolds number
Re = ũ−∞L̃−∞/ν̃−∞ → ∞, for single-phase fluids with either positive, negative or mixed nonlinear-
ity, that is to say, the fundamental derivative of thermodynamicsΓ = (1/c̃)∂(ρ̃c̃)/∂ρ̃|s̃ is strictly pos-
itive, negative or changes sign, respectively, in the region of interaction. Herec̃, ρ̃, s̃, ũ−∞, L̃−∞, ν̃−∞

are the local speed of sound, the density, the entropy, and referencevalues for the flow velocity, for a
characteristic length and for the kinematic viscosity associated with the unperturbed boundary layers,
fig. 1, a tilde denotes dimensional quantities. A prominent example for fluids withmixed nonlinearity
are dense gases with relatively large specific heats, also referred to asBZT fluids, see [1].
The interaction region exhibits a triple deck structure, fig. 1, where, as in classical triple deck theory,
e.g. see [3], the role of the main deck is to transfer the displacement effectsexerted by the lower deck
(LD) unchanged to the upper deck (UD) and the resulting pressure disturbances again unchanged to the
LD. Here, the fluid motion is governed by the boundary layer equations in incompressible form supple-
mented by the usual no slip condition at the wall and new matching conditions, [3]. The displacement
effect caused by the LD is quantified by the perturbation of the displacement thickness−A(X), with
X a local suitable scaled coordinate in streamwise direction, see fig. 1, weaklyperturbing the quasi
one-dimensional isentropic UD flow governed by the relation

G(n) (P (X); K−∞, Γ−∞, Λ−∞, N−∞) = QA(X) (1)

whereP denotes the pressure disturbance andQ is associated with the strength of the coupling between
LD and UD deck flow, all quantities are suitable scaled.G(n) is a polynomial function of the pressure
of ordern ∈ {2, 3, 4} and, following [2], can be interpreted as a local perturbation of the mass flux
density in the inviscid core region with the property that an extremum ofG(n)(P ) corresponds to a
sonic state in the core region flow. Consequently, the casen = 2 describes the behaviour of fluids that
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Figure 1: Triple deck structure of in-
teraction region;ǫ := Re−1/(7+2n).
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Figure 2: Regularised sonic rarefaction shock; PP10:
Γ−∞ = -0.051,Λ−∞ = -0.92;τw . . . wall shear stress.

pass through a sonic state only once during isentropic expansion in the considered flow region, which
is the case for fluids with strictly positive or negative nonlinearity and thus can be described locally by
Γ−∞, where the index−∞ has the meaning evaluated at upstream flow conditions. The casen = 3 and
n = 4 describes the situation for fluids with mixed nonlinearity where sonic conditionscan be reached
two or three times, respectively, and thusΛ−∞ := ∂Γ/∂ρ|s,−∞ andN−∞ := ∂2Γ/∂ρ2|s,−∞ have to
be considered too. We take the transonic similarity parameterK−∞ > 0 for subsonic andK−∞ < 0
for supersonic upstream flow conditions.
Nontrivial eigensolutions of the considered interaction problem connecting unperturbed up- and down-
stream flow conditions,A(X) → 0 for X → ±∞, correspond to the internal structures of weak normal
shocks, where the values ofP before and after the shock,P b andP a, have to satisfy the jump condition
G(n)(P

a) = G(n)(P
b) expressing the continuity of the mass flux across a shock front, [2]. Thesolutions

for the internal structure of weak rarefaction, sonic, double sonic andsplit shocks that will be presented
are therefore regularised by the mechanism of viscous inviscid interactioncompletely different to that
of thermoviscosity found in literature, see e.g. [2]. However the results obtained are, as will be shown,
equally in accordance with the admissibility criteria formulated in [2] for a nonconvex flux function. In
the following instructive solutions for the internal structure of sonic rarefaction shocks withM b > 1
andMa = 1, whereM denotes the local Mach number, for different values of the parameterQ are
briefly discussed for the example medium PP10 (C13F22), [1]. The thermodynamic properties of PP10
are calculated according to the Martin-Hou EOS using the material parameterspublished in [1]. Unlike
to compression shocks the flow in the boundary layer is accelerated reducing the displacement thickness
−A(X), fig. 2, thus avoiding the risk of flow separation frequently resulting fromshock/boundary layer
interaction. For weaker viscous inviscid interactions, i.e. smaller values ofQ, the pressure distribution
in fig. 2 is more and more approaching the shock solution predicted by inviscidtheory.
Besides the theoretical value of the discussion presented, these solutionsare expected to give a qualita-
tive insight into flow phenomena to be expected in the flow of BZT fluids through slender channels or
Laval nozzles, as BZT fluids could prove beneficial as working fluids inORC processes in the future.
Furthermore the set up described here could pose an alternative to the attempt of using a shock tube
for the experimental detection of rarefaction shocks, [1], with the distinguishing property that the shock
position is stationary and that no other shock or wave phenomena would have to be accounted for.
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