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ABSTRACT 

An increasingly higher performance is demanded of piezoelectric materials as they are 
applied to new technological fields such as MEMS / NEMS. Polycrystalline 
piezoelectric materials have a large possibility to exhibit higher performance in a 
macroscopic scale by design of crystal morphology in a microscopic scale. In this paper, 
a multi-scale finite element method by using crystallographic homogenization theory 
(Figure 1) has been applied to a typical piezoelectric material, barium titanate (BaTiO3) 
in order to estimate macro homogenized properties considering crystal morphology in 
microstructure. Crystal orientations in microstructure has been then optimized by 
steepest decent method to maximize macro piezoelectric strain constants d333 and d311, 
which are dominant factors for piezoelectric actuators. 

 

 

 

 

 

 

 

 

Figure 1  Macro- and micro-structures of polycrystalline piezoelectric materials. 

As computational results, two remarkable optimal solutions were obtained for 
microstructure. One is a polycrystalline structure found by setting macro piezoelectric 
strain constant d333 to objective function (Figure 2). It consists of three [111]-oriented 
crystals, which are in layers orderly with orientation gap 120°. If comparing with a 
conventional randomly-oriented polycrystal, the optimized microstructure presents 
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35 % increase of piezoelectric response. The other is a polycrystalline structure obtained 
for d311 (Figure 3). The optimized microstructure consists of adjacent crystals rotated by 
180°in three dimensions, and it provides 284 % increase of piezoelectric response. In 
order to reveal the ideal crystal morphology for the largest piezoelectric strain constants, 
we analyzed the normal strains, ε33 and ε11 in microstructure when unit electric field 
was applied to macrostructure. Computations indicates that the normal strains in the 
both optimized microstructures becomes the largest by electrical and mechanical effects, 
and they lead to exhibit the highest piezoelectric response that is beyond single crystal. 

 

 

 

 

 

 

(a) Macro piezoelectric strain constant                          (b) Microstructure 

Figure 2  The optimized solution maximizing macrod 333. 

 

 

 

 

 

 

(a) Macro piezoelectric strain constant                          (b) Microstructure 

Figure 3  The optimized solution maximizing macrod311. 
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