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ABSTRACT

This paper presents a numerical analysis method for solving shape identification problem of temperature distri-
bution prescribed problem in sub-domains of steady heat convective fields.

Let Ω be a heat convective fields in a steady state. The heat fluid flows in from sub-boundaries Γ0 and flows
out from sub-boundaries Γ1, where we write velocity vector u = {ui}n

i=1, pressure p, temperature θ. A domain
variation problem where the temperature distribution θ is specified with θD in sub-domains ΩD ⊂ Ω can be
regarded as a shape optimization problem. For simplicity, we assume that the sub-domains ΩD, sub-boundaries
Γ0 and Γ1 are invariables. This problem is formulated as

Find Ω (1)

that minimizes E(θ) = E(θ − θD, θ − θD) =
∫

ΩD

(θ − θD)2 dx (2)

subject to aV (u,w) + b(u, u, w) + c(w, p) = l(w) ∀w ∈ W (3)
c(u, q) = 0 ∀q ∈ Q (4)
aH(θ, ξ) + d(u, θ, ξ) + hH(θ, ξ) = fq(ξ) + fh(ξ) ∀ξ ∈ Ξ (5)∫

Ω

dx ≤ M (6)

where Eqs.(3), (4) and (5) are variational forms, or weak forms, using adjoint velocity w = {wi}n
i=1, adjoint

pressure q and adjoint temperature ξ for the state equations. Eq.(6) is the constraint with respect to the volume.
The terms such as the aV (u, w) are defined as

aV (u,w) =
1
Re

∫
Ω

wi,j(ui,j + uj,i) dx, b(v, u, w) =
∫

Ω

wivjui,j dx, c(w, p) = −
∫

Ω

wi,ip dx,

l(w) =
∫

Γ1

wiσ̂i dΓ, aH(θ, ξ) =
1

Pe

∫
Ω

θ,kξ,k dx, d(u, θ, ξ) =
∫

Ω

ξujθ,j dx,

hH(θ, ξ) =
∫

Γh

θξĥ dΓ, fq(ξ) =
∫

Γq

ξq̂ dΓ, fh(ξ) =
∫

Γh

ξĥθ̂f dΓ

where Reynolds number Re, Peclet number Pe, the traction σ̂i, the heat flux q̂, the heat transfer coefficient ĥ and
the ambient temperature θ̂f are given as known values or functions.

Applying the concept of the Lagrange multiplier method and the adjoint variable method, this problem can be
rendered as a stationary problem for the Lagrange functional L(u, p, θ, w, q, ξ, Λ):

L = E(θ − θD, θ − θD) − aV (u,w) − b(u, u, w) − c(w, p) + l(w) − c(u, q)

−aH(θ, ξ) − d(u, θ, ξ) − hH(θ, ξ) + fq(ξ) + fh(ξ) + Λ(
∫

Ω

dx − M) (7)
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Figure 1: Numerical results for 2D branch channel problem, shapes and temperature distributions

where Λ is the Lagrange multiplier with respect to the volume constraint. The derivative L̇ with respect to domain
variation for shape optimization is calculated. Letting this L̇ = 0, the Kuhn-Tucker conditions with respect to
u, p, θ, w, q, ξ, Λ are obtained by

aV (u,w′) + b(u, u, w′) + c(w′, p) = l(w′) ∀w′ ∈ W (8)
c(u, q′) = 0 ∀q′ ∈ Q (9)
aH(θ, ξ′) + d(u, θ, ξ′) + hH(θ, ξ′) = fq(ξ′) + fh(ξ′) ∀ξ′ ∈ Ξ (10)
aV (u′, w) + b(u′, u, w) + b(u, u′, w) + c(u′, q) + d(u′, θ, ξ) = 0 ∀u′ ∈ W (11)
c(w, p′) = 0 ∀p′ ∈ Q (12)
aH(θ′, ξ) + d(u, θ′, ξ) + hH(θ′, ξ) = 2E(θ − θD, θ′) ∀θ′ ∈ Θ (13)

Λ ≥ 0,

∫
Ω

dx ≤ M, Λ(
∫

Ω

dx − M) = 0 (14)

that indicate the variational forms of the original state equations for u, p and θ, the variational forms of the
adjoint equations for w, q and ξ which we call adjoint equations, respectively. Where ( · )′ is the shape derivative
for domain variation of the distributed function fixed in spatial coordinates. Under the condition satisfying Eqs.
(8)- (14), the derivative L̇ agrees with the linear form < Gν, V > with respect to the velocity function V of
domain variation:

L̇|u,p,θ,w,q,ξ,Λ =< Gν, V >=
∫

Γ

GνiVi dΓ, (15)

G = G0 + G1Λ,

G0 = − 1
Re

wi,j(ui,j + uj,i) −
1

Pe
θ,kξ,k −∇ν(ĥθξ) − (ĥθξ)κ + ∇ν(ĥθ̂fξ) + (ĥθ̂fξ)κ,

G1 = 1 (16)

where ν is an outward unit normal vector on the boundary, ∇ν( · ) ≡ ∇( · ) · ν and κ denotes the mean curvature.

The coefficient vector function Gν in Eq. (15) has the meaning of a sensitivity function relative to domain
variation and is so-called the shape gradient function. The scalar function G is called the shape gradient density
function. Since the shape gradient function is obtained, the traction method [1][2] can be applied to this shape
optimization problem.

The successful numerical results of 2D branch channel problem, where the temperature distribution θ is specified
with θD = 40 in sub-domain ΩD, shows the validity of the present method in Fig. 1.
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