SHAPE IDENTIFICATION OF FORCED HEAT-CONVECTION FIELDS

\author{

* Eiji Katamine ${ }^{1}$, Yoshiyuki Kawase ${ }^{1}$ and Hideyuki Azegami ${ }^{2}$
 ${ }^{1}$ Gifu National College of Technology
 Kamimakuwa, Motosu-city, Gifu 501-0495, JAPAN
 katamine@gifu-nct.ac.jp
 ${ }^{2}$ Nagoya University
 Furo-cho, Nagoya-city, 464-8601, JAPAN
 azegami@is.nagoya-u.ac.jp
}

Key Words: Inverse Problem, Shape Optimization, Heat Transfer Design, Optimum Design.

Abstract

This paper presents a numerical analysis method for solving shape identification problem of temperature distribution prescribed problem in sub-domains of steady heat convective fields Let Ω be a heat convective fields in a steady state. The heat fluid flows in from sub-boundaries Γ_{0} and flows out from sub-boundaries Γ_{1}, where we write velocity vector $u=\left\{u_{i}\right\}_{i=1}^{n}$, pressure p, temperature θ. A domain variation problem where the temperature distribution θ is specified with θ_{D} in sub-domains $\Omega_{D} \subset \Omega$ can be regarded as a shape optimization problem. For simplicity, we assume that the sub-domains Ω_{D}, sub-boundaries Γ_{0} and Γ_{1} are invariables. This problem is formulated as $$
\begin{align*} \text { Find } & \Omega \tag{1}\\ \text { that minimizes } & E(\theta)=E\left(\theta-\theta_{D}, \theta-\theta_{D}\right)=\int_{\Omega_{D}}\left(\theta-\theta_{D}\right)^{2} d x \tag{2}\\ \text { subject to } & a^{V}(u, w)+b(u, u, w)+c(w, p)=l(w) \quad \forall w \in W \tag{3}\\ & c(u, q)=0 \quad \forall q \in Q \tag{4}\\ & a^{H}(\theta, \xi)+d(u, \theta, \xi)+h^{H}(\theta, \xi)=f_{q}(\xi)+f_{h}(\xi) \quad \forall \xi \in \Xi \tag{5}\\ & \int_{\Omega} d x \leq M \tag{6} \end{align*}
$$

where Eqs.(3), (4) and (5) are variational forms, or weak forms, using adjoint velocity $w=\left\{w_{i}\right\}_{i=1}^{n}$, adjoint pressure q and adjoint temperature ξ for the state equations. Eq.(6) is the constraint with respect to the volume. The terms such as the $a^{V}(u, w)$ are defined as

$$
\begin{aligned}
& a^{V}(u, w)=\frac{1}{R e} \int_{\Omega} w_{i, j}\left(u_{i, j}+u_{j, i}\right) \mathrm{d} x, \quad b(v, u, w)=\int_{\Omega} w_{i} v_{j} u_{i, j} \mathrm{~d} x, \quad c(w, p)=-\int_{\Omega} w_{i, i} p \mathrm{~d} x, \\
& l(w)=\int_{\Gamma_{1}} w_{i} \hat{\sigma}_{i} \mathrm{~d} \Gamma, \quad a^{H}(\theta, \xi)=\frac{1}{P e} \int_{\Omega} \theta_{, k} \xi, k \\
& h^{H}(\theta, \xi)=\int_{\Gamma_{h}} \theta \xi \hat{h} \mathrm{~d} \Gamma, \quad d\left(u, \theta, \quad f_{q}(\xi)=\int_{\Gamma_{q}} \xi \hat{q} \mathrm{~d} \Gamma, \quad f_{h}(\xi)=\int_{\Gamma_{h}} \xi u_{j} \theta_{, j} \mathrm{~d} x,\right. \\
& h_{f} \mathrm{~d} \Gamma
\end{aligned}
$$

where Reynolds number $R e$, Peclet number $P e$, the traction $\hat{\sigma_{i}}$, the heat flux \hat{q}, the heat transfer coefficient \hat{h} and the ambient temperature $\hat{\theta_{f}}$ are given as known values or functions.
Applying the concept of the Lagrange multiplier method and the adjoint variable method, this problem can be rendered as a stationary problem for the Lagrange functional $L(u, p, \theta, w, q, \xi, \Lambda)$:

$$
\begin{align*}
L=E & \left(\theta-\theta_{D}, \theta-\theta_{D}\right)-a^{V}(u, w)-b(u, u, w)-c(w, p)+l(w)-c(u, q) \\
& -a^{H}(\theta, \xi)-d(u, \theta, \xi)-h^{H}(\theta, \xi)+f_{q}(\xi)+f_{h}(\xi)+\Lambda\left(\int_{\Omega} d x-M\right) \tag{7}
\end{align*}
$$

Figure 1: Numerical results for 2D branch channel problem, shapes and temperature distributions
where Λ is the Lagrange multiplier with respect to the volume constraint. The derivative \dot{L} with respect to domain variation for shape optimization is calculated. Letting this $\dot{L}=0$, the Kuhn-Tucker conditions with respect to $u, p, \theta, w, q, \xi, \Lambda$ are obtained by

$$
\begin{align*}
& a^{V}\left(u, w^{\prime}\right)+b\left(u, u, w^{\prime}\right)+c\left(w^{\prime}, p\right)=l\left(w^{\prime}\right) \quad \forall w^{\prime} \in W \tag{8}\\
& c\left(u, q^{\prime}\right)=0 \quad \forall q^{\prime} \in Q \tag{9}\\
& a^{H}\left(\theta, \xi^{\prime}\right)+d\left(u, \theta, \xi^{\prime}\right)+h^{H}\left(\theta, \xi^{\prime}\right)=f_{q}\left(\xi^{\prime}\right)+f_{h}\left(\xi^{\prime}\right) \quad \forall \xi^{\prime} \in \Xi \tag{10}\\
& a^{V}\left(u^{\prime}, w\right)+b\left(u^{\prime}, u, w\right)+b\left(u, u^{\prime}, w\right)+c\left(u^{\prime}, q\right)+d\left(u^{\prime}, \theta, \xi\right)=0 \quad \forall u^{\prime} \in W \tag{11}\\
& c\left(w, p^{\prime}\right)=0 \quad \forall p^{\prime} \in Q \tag{12}\\
& a^{H}\left(\theta^{\prime}, \xi\right)+d\left(u, \theta^{\prime}, \xi\right)+h^{H}\left(\theta^{\prime}, \xi\right)=2 E\left(\theta-\theta_{D}, \theta^{\prime}\right) \quad \forall \theta^{\prime} \in \Theta \tag{13}\\
& \Lambda \geq 0, \quad \int_{\Omega} d x \leq M, \quad \Lambda\left(\int_{\Omega} d x-M\right)=0 \tag{14}
\end{align*}
$$

that indicate the variational forms of the original state equations for u, p and θ, the variational forms of the adjoint equations for w, q and ξ which we call adjoint equations, respectively. Where $(\cdot)^{\prime}$ is the shape derivative for domain variation of the distributed function fixed in spatial coordinates. Under the condition satisfying Eqs. (8)- (14), the derivative \dot{L} agrees with the linear form $\langle G \nu, V\rangle$ with respect to the velocity function V of domain variation:

$$
\begin{align*}
& \left.\dot{L}\right|_{u, p, \theta, w, q, \xi, \Lambda}=<G \nu, V>=\int_{\Gamma} G \nu_{i} V_{i} d \Gamma \tag{15}\\
& G=G_{0}+G_{1} \Lambda \\
& G_{0}=-\frac{1}{R e} w_{i, j}\left(u_{i, j}+u_{j, i}\right)-\frac{1}{P e} \theta_{, k} \xi_{, k}-\nabla_{\nu}(\hat{h} \theta \xi)-(\hat{h} \theta \xi) \kappa+\nabla_{\nu}\left(\hat{h} \hat{\theta_{f}} \xi\right)+\left(\hat{h} \hat{\theta_{f}} \xi\right) \kappa, \\
& G_{1}=1 \tag{16}
\end{align*}
$$

where ν is an outward unit normal vector on the boundary, $\nabla_{\nu}(\cdot) \equiv \nabla(\cdot) \cdot \nu$ and κ denotes the mean curvature.
The coefficient vector function $G \nu$ in Eq. (15) has the meaning of a sensitivity function relative to domain variation and is so-called the shape gradient function. The scalar function G is called the shape gradient density function. Since the shape gradient function is obtained, the traction method [1][2] can be applied to this shape optimization problem.
The successful numerical results of 2D branch channel problem, where the temperature distribution θ is specified with $\theta_{D}=40$ in sub-domain Ω_{D}, shows the validity of the present method in Fig. 1.

REFERENCES

[1] H. Azegami, Solution to boundary shape identification problems in elliptic boundary value problems using shape derivatives, Inverse Problems in Engineering Mechanics II, (eds. M. Tanaka and G.S. Dulikravich), Elsevier, 277-284, 2000.
[2] E. Katamine, H. Azegami, T. Tsubata and S. Itoh, "Solution to Shape Optimization Problems of Viscous Flow Fields", International Journal of Computational Fluid Dynamics, 19, No.1, 45-51, 2005.

