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Adaptive discretization of parameter identification problemes in PDEs
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ABSTRACT

Parameter identification problems for PDEs such as

Find q ∈ Q from observations gδ of C(u) of the solution u to the PDE (in weak form)

A(q, u)(v) = (f, v) ∀v ∈ V

often lead to large scale inverse problems. To reduce the computational effort for the repeated solution
of the forward and even of the inverse problem — as it is required for determining the regulrization
parameter according to the discrepancy principle in Tikhonov regularization — we use an adaptive
discretization based on goal oriented error estimators. This concept originating from optimal control
provides an estimate of the error in a so-called quantity of interest — a functional of the control q
(which in our context is the searched for parameter) and the PDE solution u — based on which the
discretizations of q, u (and possibly also the adjoint PDE solution) are locally refined. The crucial
question for parameter identification problems is now the choice of an appropriate quantity of interest.

A convergence analysis on discretized spaces for q and u of the Tikhonov regularization

Minimize Jα(q, u) = ‖C(u)− gδ‖2
+ α‖q‖2 over q ∈ Q , u ∈ V ,

under the constraints A(q, u)(v) = (f, v) ∀v ∈ V

with the discrepancy principle
‖C(u(qδ

α∗))− gδ‖ = τδ

for regularization parameter choice shows, that in order to determine the correct regularization param-
eter, one has to guarantee sufficiently high accuracy in the squared residual norm ‖C(u(qδ

α∗))− gδ‖2

which is therefore our quantity i of interest — whereas q and u themselves need not be computed
precisely everywhere. This fact allows for relatively low dimensional adaptive meshes and hence
for a considerable reduction of the computational effort. In addition to that, once the error estimate



has been evaluated, the special structure of the Tikhonov functional leads to a simple computation
of the derivative i′ of the squared residual norm with respect to the regularization parameter α, as
we require it for carrying out Newton’s method for determining α according to the discrepancy
principle. Investigating into the accuracy requirements for a fast convergence of this Newton iteration
and providing error estimators also for i′, we arrive at a highly efficient method for determining the
regularization parameter. To finally compute a minimizer of the Tikhonov functional Jα∗ with the so
determined regularization parameter α∗ we can again use goal oriented adaptivity, this time with Jα∗

as a quantity of interest.
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