Adaptive discretization of parameter identification problemes in PDEs

¹ University of Stuttgart	² University of Heidelberg	³ RICAM Linz, Austrian
Pfaffenwaldring 57	Im Neuenheimer Feld 293/294	Academy of Sciences
70569 Stuttgart, Germany	69120 Heidelberg, Germany	Altenbergerstraße 69
barbara.kaltenbacher@	anke.griesbaum@	4040 Linz, Austria
mathematik.uni-stuttgart.de	iwr.uni-heidelberg.de	boris.vexler@oeaw.ac.at

Key Words: *parameter identification, adaptivity, inverse problems, regularization*

ABSTRACT

Parameter identification problems for PDEs such as

Find $q \in Q$ from observations g^{δ} of C(u) of the solution u to the PDE (in weak form)

 $A(q,u)(v) = (f,v) \quad \forall v \in V$

often lead to large scale inverse problems. To reduce the computational effort for the repeated solution of the forward and even of the inverse problem — as it is required for determining the regulrization parameter according to the discrepancy principle in Tikhonov regularization — we use an adaptive discretization based on goal oriented error estimators. This concept originating from optimal control provides an estimate of the error in a so-called quantity of interest — a functional of the control q(which in our context is the searched for parameter) and the PDE solution u — based on which the discretizations of q, u (and possibly also the adjoint PDE solution) are locally refined. The crucial question for parameter identification problems is now the choice of an appropriate quantity of interest.

A convergence analysis on discretized spaces for q and u of the Tikhonov regularization

$$\begin{array}{ll} \text{Minimize} \quad J_{\alpha}(q,u) = \left\| C(u) - g^{\delta} \right\|^{2} + \alpha \|q\|^{2} \text{ over } q \in Q \,, \quad u \in V \,, \\ \text{under the constraints } A(q,u)(v) = (f,v) \quad \forall v \in V \end{array}$$

with the discrepancy principle

$$\|C(u(q_{\alpha_*}^{\delta})) - g^{\delta}\| = \tau \delta$$

for regularization parameter choice shows, that in order to determine the correct regularization parameter, one has to guarantee sufficiently high accuracy in the squared residual norm $||C(u(q_{\alpha_*}^{\delta})) - g^{\delta}||^2$ which is therefore our quantity *i* of interest — whereas *q* and *u* themselves need not be computed precisely everywhere. This fact allows for relatively low dimensional adaptive meshes and hence for a considerable reduction of the computational effort. In addition to that, once the error estimate has been evaluated, the special structure of the Tikhonov functional leads to a simple computation of the derivative i' of the squared residual norm with respect to the regularization parameter α , as we require it for carrying out Newton's method for determining α according to the discrepancy principle. Investigating into the accuracy requirements for a fast convergence of this Newton iteration and providing error estimators also for i', we arrive at a highly efficient method for determining the regularization parameter. To finally compute a minimizer of the Tikhonov functional J_{α_*} with the so determined regularization parameter α_* we can again use goal oriented adaptivity, this time with J_{α_*} as a quantity of interest.

REFERENCES

- [1] A. GRIESBAUM, B. KALTENBACHER, AND B. VEXLER, *Efficient conputation of the Tikhonov regularization parameter by goal oriented adaptive discretization*, submitted.
- [2] A. GRIESBAUM, B. KALTENBACHER, AND B. VEXLER, Goal oriented adaptive discretization for nonlinear ill-posed problems, in preparation.