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ABSTRACT

Over the last decade(s) there has been an increasing demand to predict unsteady flows. Knowledge
of unsteady loads on, for example, wind turbine blades have proved to be of vital importance for an
efficient life cycle design. Due to the unsteadiness of these problems and the large stiffness associated
with large Reynold number flows, these computations can take months on a series of processors. To
speed up these computations we use higher order multistage implicit time integrations schemes, because
they were shown to be more computationally efficient than the standard backward difference schemes,
also for engineering orders of accuracies1 . However, specially for larger time steps the performance of
standard nonlinear multigrid deteriorates. The goal of this research is therefore to further speed up the
computations.
Because of the potential speed up of a Jacobian-free Newton-Krylov (JFNK) method over standard
nonlinear multigrid for these problems2 we have implemented a JFNK method in our aerodynamic
production code. Preconditioning of the linear systems that arise after Newton linearization is, however,
of crucial importance for the computational efficiency of the JFNK method3. This paper therefore seeks
for an optimal preconditioner to compute unsteady, large Reynolds’ number flows solved with higher
order implicit time integration schemes. Because higher order implicit time integrations schemes are
not yet often used, not much is known on how to create an efficient preconditioner.
Possible preconditioners are: (non)linear multigrid, a recursive variant of GMRES and (matrix-free)
approximate factorizations (AF) of the Jacobian. (Non)linear multigrid, matrix-free AF’s and GMRESR
have the advantage of a low memory consumption. However, they require more computational time
per iteration and the low-frequency errors may be poorly damped. AF’s of (an approximation of) the
Jacobian can be very powerful because errors in the whole frequency domain are damped. Furthermore,
once the factorization has been computed it can be reused for next linear solves, which can make them
relatively cheap to apply. Finally, this type of preconditioner is relatively straightforward to implement
in our aerodynamic production code. We have therefore chosen to precondition the linear systems with
a Jacobian based Incomplete Lower Upper factorization based on the footprint of the Jacobian (ILU(k)).
Preliminary results showed that these AF’s greatly outperformed multilevel AF’s and AF’s based on dual
thresholds.
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Figure 1: Comparison of different strategies to build the Jacobian from which the ILU(k) is made.

Disadvantages of ILU(k) preconditioners can be lack of robustness4 and large memory consumption.
The lack of robustness is easily circumvented by slightly increasing the diagonal dominance of the
Jacobian. A common approach to reduce memory usage is to neglect contributions further away than
nearest neighbors in the Jacobian5 . However, for unsteady two-dimensional flows around wind turbine
profiles on unstructured grids, we find a much better linear convergence with an ILU(k) preconditioner
that is based on a lumped Jacobian. In Fig. 1 the cpu costs are given as function of the memory con-
sumption of the ILU(k) and Krylov subspace. The total cpu costs are required to solve one physical time
step with multiple stages with the JFNK method. The different points in Fig. 1 are found for different
levels of fill in of the ILU(k). The ILU(k)’s are computed for different Jacobians: for ‘dist-1’ all con-
tributions from points further away than nearest neighbors are neglected, while for ‘dist-2’ all points
further away than the neighbors of neighbors are neglected. ’dist-2, lumped’ has the same footprint as
‘dist-1’, however contributions of neighbors of neighbors are lumped to nearest neighbors.
To further enhance the efficiency of the the iterative solver we have investigated the successive com-
bination of nonlinear multigrid and the JFNK method. Furthermore, we are investigating recycling of
Krylov subspace to speed up the linear solves. In our paper results for a two and three dimensional
unsteady test case are discussed.
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