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ABSTRACT

One of the most significant barriers to the increased use of composite materials is the inability to predict
accurately structural failure, especially when both delamination and intraply failure mechanisms, such
as matrix cracking or fiber failure, contribute to the fracture process.

Delamination is normally simulated using methods based on Linear-Elastic Fracture Mechanics, such as
the Virtual Crack Closure Technique [1], or using cohesive formulations [2]. The onset of intralaminar
failure mechanisms is normally predicted using ply-based failure criteria [3]. Generally, failure criteria
alone are unable to predict the collapse of composite structures. To predict failure initiation, propagation
and final collapse it is necessary to combine the ply-based failure criteria with appropriate damage
models.

There are several relevant structural applications of laminated composites where both delamination
and ply failure mechanisms are relevant, interacting, energy dissipation mechanisms. For example, in
composites subjected to low velocity impact, in skin-stiffener terminations or in ply-scaled notched
laminates. Therefore, the objective of this work is to formulate a fully three-dimensional damage model
at the sub-ply level that is able to represent both interlaminar and intralaminar failure mechanisms
without previous knowledge of the orientation of the failure planes. The composite material is taken as
a transversely isotropic material and, to accurately predict the crack closure effect under load reversal
cycles, the proposed constitutive model is defined in a coordinate frame where the shear strainε23 is
equal to zero.

The proposed constitutive model is implemented in ABAQUS [4] non-linear finite element code as a
user-written UMAT subroutine. The model is validated by comparing the numerical predictions with
the experimental data obtained by Varna in[±θ/904]s glass-epoxy laminates [5]. Figure 1 shows the
predicted accumulation of transverse matrix cracks in a[02/904]s laminate loaded in tension, and Figure
2 compares the predicted and experimentally measured reduction in the laminate’s Young modulus and
Poisson ratio as a function of the applied strain
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Figure 1: Internal variablerT and transverse tension damage variable (dT+) for a [02/904]s laminate.
Mean laminate deformation ofεxx=0.01. Deformed scale: 10x.
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Figure 2:Ex andνxy as functions of the applied strain for a[02/904] laminate. Experimental results
from Varnaet al. [5].

The results indicate that the model is able to capture the effect of the transverse matrix cracks in the
residual strength and stiffness of composite laminates. Furthermore, the model simulates the interaction
between transverse matrix cracks and delamination that occurs at high values of the applied strain.
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