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ABSTRACT

Numerical simulation of aeroacoustic problems requires discrete approximations to governing equa-
tions having high accuracy. On uniform spatial grids, finite differences preserving dispersion relations
are widely used, including DRP schemes by Tam [1] and their modifications by Bailly and Bogey [2].
The time advancing is performed mainly with the use of explicit Runge–Kutta methods.

In the algorithms mentioned, all spatial derivatives are approximated on extended stencils involving
7 points in [1] and up to 13 points in [2]. This fact prevents of using homogeneous algorithms for cal-
culations in all internal mesh nodes. A common issue is in applying biased differences or resorting to
reduced stencils near free boundaries. In this study, we consider all the equations specified in “non-
standard” nodes as boundary conditions of special kind. We deal with a class of discrete nonreflecting
boundary conditions.

We start with the linear one-dimensional transport equation

∂u/∂t + ∂u/∂x = 0. (1)

Its spatial discretizations have a form shown here for the DRP scheme,

duj/dt +
1
h

3∑

l=−3

aluj+l = 0, j = 3, . . . , N−3. (2)

Such numerical schemes, unlike the differential case (1), describe several types of waves. The worst
kind of spurious waves are sawtooth grid oscillations propagating in the opposite direction. The tech-
nique to construction of nonreflecting boundary conditions consists of an accurate reproduction of dis-
persion relations suggested by internal scheme patterns. Near the right-hand boundary, the discrete
“physical” mode is approximated on non-symmetric stencils, and near the left-hand one, the spurious
sawtooth wave is modeled. For DRP scheme (2), we obtain a set of left-hand boundary conditions

duj/dt +
1
h

6∑

l=0

cjlul = 0, j = 0, 1, 2. (3)



Such approach distinguishes from the traditional grid approximations in that both initial and target
objects have discrete nature.

The resulting boundary equations are not uniquely determined. We calculate the coefficients based on
the maximal approximation order as well as on least-square optimizations of dispersion relations. E.g.,
the values of cjl from (3) can be obtained as the solution to the problem
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0
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dϕ → min

as
6∑

l=0

(−1)l−jcjl =
3∑

l=−3

(−1)lal ,
6∑

l=0

(−1)l−j(l−j)ncjl =
3∑

l=−3

(−1)llnal , n = 1, 2, 3, 4.

The versions of boundary conditions constructed are tested from the stability viewpoint by means of
numerical and theoretical investigations of spectra of finite-difference operators.

The similar technique is applied to the quasilinear transport equation

∂u/∂t + u ∂u/∂x = 0

and the Euler system of equations linearized with respect to a constant background flow. Some new
situations are dealt with. Maintaining stability of the schemes is especially important in these cases.

Boundary conditions for the Euler equations are typically reduced to problems for the scalar transport
equation. The choice of appropriate boundary conditions should obey the following recommendations.

• Avoid using downwind differences (with respect to characteristics).

• In near-boundary internal nodes, approximate some differential nonreflecting boundary condi-
tions rather than the governing equations.

The algorithms proposed are validated on numerical simulation of test problems.
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