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ABSTRACT 

There are the following issues with existing numerical methods for elastodynamics 

problems: a) due to spurious high-frequency oscillations, the lack of reliable numerical 

techniques that yield an accurate solution of wave propagation in solids; b) the 

treatment of error accumulation for long-term integration; c) the selection of an 

effective numerical method among known ones; d) the increase in accuracy and the 

reduction of computation time for real-world dynamic problems.  

A new numerical approach for computer simulation of the dynamic response of 

complex structures is suggested. The new technique is very general, and would be of 

equal value in such diverse applications as: explosions; earthquakes; crashes; dynamics 

testing of aerospace vehicles, airplanes, bridges and buildings; and many others. The 

new approach includes a new solution strategy and new second- and high-order accurate 

time-integration methods for elastodynamics, and resolves the issues listed. The finite 

element method is used for the space discretization. 

The new solution strategy consists of two stages: basic computations and post-

processing. Basic computations should be done by a method with zero numerical 

dissipation (zero artificial viscosity) and allow large high-frequency oscillations. Post-

processing will be done by a method with large numerical dissipation for filtering high-

frequency oscillations. It is proved that for linear elastodynamics the new strategy yields 

the most accurate results compared to existing approaches. New fundamental results 

have been obtained due to the new strategy: e.g., the trapezoidal rule is the best method 

for basic computations among all second-order implicit methods; in contrast to 

textbooks on finite elements, for long-term integration, the size of time increments for 

explicit methods should be much smaller than the stability limit (rather than close to it) 

and depend on the total number of time increments. The extension of the strategy to 

non-linear problems is possible in many cases and will be discussed.  

For effective implementation of the new solution strategy, new implicit and explicit 

high-order accurate time-continuous Galerkin (TCG) methods with controllable 

numerical dissipation are developed (see also [1, 2]). The accuracy of the new TCG 

methods is higher than the accuracy of known methods at the same number of degrees 

of freedom. For the selection of the size of time increments at long-term integration, a 

new a priori error estimator in time is developed.  



 

1-D and 2-D numerical examples (e.g., see Figs. 1, 2) show that the new approach with 

implicit or explicit TCG methods allows a non-oscillatory solution for wave 

propagation in solids and reduces computation time by 5-50 times and more in 

comparison to the time required by the existing second-order methods used in most 

commercial software. For the first time a reliable, fast, accurate and non-oscillatory 

solution of wave propagation in solids is possible. In contrast to existing approaches, the 

new technique does not require any guesswork for the selection of numerical dissipation 

or artificial viscosity and retains the accuracy of the basic solution at low modes. Based 

on the new approach, for the first time an accurate solution of high-frequency pulse 

propagation in the Hopkinson Pressure Bar is calculated (without reliance on 

assumptions for the correction of oscillatory results). 
 

[1] A. V. Idesman, “A new high-order accurate continuous Galerkin method for linear elastodynamics 

problems”, Computational Mechanics, Vol. 40, pp. 261-279, (2007). 

[2] A. V. Idesman, “Solution of linear elastodynamics problems with space-time finite elements on 

structured and unstructured meshes”, Computer Methods in Applied Mechanics and Engineering, 

Vol. 196, pp. 1787–1815, (2007). 

[3] F. Vales, S. Moravka, R. Brepta, and J. Cerv. Wave propagation in a thick cylindrical bar due to 

longitudinal impact. JSME International Journal, Series A, Vol. 39, pp. 60-70, (1996). 

 

 

 

 

 

sumptions for the correction of oscillatory results). 

b 
z/R 

σ*z 

σ*z 

z/R 

a 

Fig. 2. The distribution of the dimensionless axial stress along the axial coordinate and the fixed radial 

coordinate r/R= 0.05 (R is the radius of the bar, see [3] for the notations) at dimensionless time t = 2. The 

axisymmetric formulation of the impact problem shown in Fig. 1a is considered. Curve 1 with oscillations due 

to Gibbs phenomena is the approximation of the analytical solution; see [3]. Curves 2, 3 and 4 correspond to 

the numerical solutions obtained with the new approach on uniform meshes with 80000, 20000 and 5000 

quadratic 9-node elements, respectively. b) is the detailed representation of a) in the range 1.5 < z/R < 2.25. 

 

Fig.1 The velocity distribution along the 1-D 

bar during impact (after 5 wave reflections 

from the bar ends). Curves 1, 2 and 3 

correspond to basic computations at time 

T=22.26, post-processing (8 time increments) 

at time T=22.4 and the analytical solution at 

time T=22.4. A uniform mesh with 200 

quadratic 3-node elements is used. 

 


