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ABSTRACT 

Recently, the multiquadric radial basis function (RBF) collocation method has been 
widely applied to solve partial differential equations due to its excellent capability in 
scattered data fitting and convergence rate of exponential order. However, in the 
literature, the applications are usually restricted to simple convex domains with only 
few exceptions [1-2]. In fact, the multiquadric RBFs can only fit scattered data defined 
in topologically rectangular domains [3]. Therefore, to employ the method to solve a 
problem in a nonconvex domain, one usually needs to incorporate some domain 
decomposition techniques in a typical solution procedure  [4] so that the domain can be 
decomposed into a set of convex and topologically rectangular sub-domains. In this way, 
iterations in computations are required. The whole computation procedure becomes not 
only complicated but also time consuming. 

In this paper, we introduce a fictitious domain extension approach that extends the 
nonconvex physical geometries defined in a problem to a topologically rectangular 
domain. The idea is derived from the superposition principle developed in the potential 
flow theory. In this approach, the definition domains of the governing equation and its 
solution are extended to the fictitious region and its boundary. The physical boundary 
conditions are still specified on the boundaries of the physical domain. And then the 
RBF collocation method is applied in the new extended domain.  

We first applied this approach to a sudden-contraction potential flow problem. The 
physical domain is shown in Figure 1(a). The variable φ denotes the stream function. 
Two different domain extensions were devised as shown in Figure 1(b) and (c) which 
also show the collocation point distributions. The streamlines are shown in Figure 2(a). 
It is found that both domain extensions lead to similar results. To compare the results, 
we also show the streamline pattern computed from the finite difference method in 
Figure 2(b). It can be found that they are similar to those obtained by the present 
method except the part near the region of sudden contraction. 

Studies of several other test problems with arbitrary geometries were also conducted. 
We demonstrate that the solution can be directly obtained without domain 



 

decompositions and iterations. We also tested the present approach for problems with 
different types of boundary conditions. The results show that the new approach is 
simple, efficient and accurate. 

 

REFERENCES 

[1] J. Li, “A Radial Basis Meshless Method for Solving Inverse Boundary Value 
Problems,” Commun. Numer. Methods Eng., Vol. 20, pp. 51-60 (2004). 

[2] M. Zerroukat, H. Power, and C.S. Chen, “A Numerical Method for Heat Transfer 
Problems Using Collocation and Radial Basis Functions,” Int. J. Numer. Methods 
Engrg., Vol. 42, pp. 1263-1278 (1998). 

[3] W. Li, W. Chen and Y. Cai, “Surface Reconstruction from Scattered Data Defined 
on Nonrectangular Domains Using Multiquadric Basis Functions,” Computer Eng. 
Appl., No. 23, pp. 78-80 (2001). 

[4] L. Ling and E.J. Kansa, “Preconditioning for Radial Basis Functions with Domain 
Decomposition Methods,” Math. Computer Model., Vol. 40, pp. 1413-1427 (2005). 

 

∂φ/∂y =1

∂φ/∂y =2

φ = 0

φ = 1

φ = 1

φ = 1

flow 
direction

∂φ/∂y =1

∂φ/∂y =2

φ = 0

φ = 1

φ = 1

φ = 1

flow 
direction

     
               (a) physical domain.                      (b) domain extension 1.           (c) domain extension 2. 

Figure 1 Potential flow in a channel of sudden contraction. 
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(a) Present method.                               (b) Finite difference method. 

Figure 2 Streamlines of the flow. 


