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ABSTRACT

Polynomial chaos expansions of response quantities have been widely utilized in Computational
Stochastic Mechanics and are well documented [1]. Introduced in conjunction with a truncated se-
ries representation of the input random field, they represent global approximations on a Hilbert space
of functions of (usually standard Gaussian) random variables. In the context of reliability estimation,
stochastic response surfaces obtained by local chaos expansions have been developed [2]. They depend
on three parameters: the truncation of the series representation of the input random field, a mesh pa-
rameter in the physical space and a mesh parameter in the random parameter space. Thus, a stochastic
response surface can be viewed as a member of a three parameter family of metamodels.

However, the discretization of the random field may enforce a rather fine FE mesh and thus increase the
computational effort. In this paper, a wavelet expansion of the eigenfunctions in the series representation
of the random field is introduced in order to control the spatial resolution of the eigenfunctions. Finer
scales are taken into account by projection operators. The truncation level of the wavelet expansion has
been identified as an additional parameter of the metamodel.

Let D be a convex bounded open set in Rn and (Ω,F , P ) a complete probability space, where Ω is the
set of outcomes, F the σ-field of events and P : F → [0 : 1] a probability measure. Consider the
following model problem on D̄ × Ω: find u : D̄ × Ω → R, such that almost surely:

−∇ · α(x, ω)∇u(x, ω) = f(x) on D, u(x, ω) = 0 on ∂D (1)

where L(x) is a deterministic differential operator and α : D × Ω → R is a random field.

The random field α(x, ω) is replaced by a truncated Karhunen-Loève expansion:

α(x, ω) ≈ E[α](x) +
N∑

i=1

√
λiξi(ω)φi(x), (2)



where ξi(ω) are zero mean, unit variance and uncorrelated random variables. The constants λi and
the orthonormal deterministic functions φi(x) are related to the eigenvalue problem for the covariance
kernel C(x, y) =

∫
Ω(α(x, ω)− E[α](x))(α(y, ω)− E[α](y))dP (ω):

∫

D

C(x, y)φi(y)dy = λiφi(x). (3)

The random variables can be expressed by the reproducing kernel representation

ξi(ω) =
1
λi

∫

D

(α(x, ω)− E[α](x))φi(x)dx. (4)

The eigenfunctions are further decomposed on a Haar wavelet basis. These approximations have been
introduced by several authors (see e.g. [3]) for simulating random fields. Here, the decomposition is
introduced in order to obtain a coarse approximation (by taking scales until a certain level m into
account) and a fine approximation (scales from m + 1 to n).

For the numerical solution of the stochastic boundary value problem a variational formulation on the
tensor product Hilbert space H1

0 (D)⊗L2(Ω) is introduced. Standard piecewise continuous polynomial
approximations are applied in H1

0 (D), and h-approximations [4] are utilized in L2(Ω). To this end, the
domain

∏N
i=1 ξi(Ω) is partitioned into non-overlapping domains. These domains serve as support of

the approximation functions, which are polynomials in ξ(ω), i = 1, ..., N, on one domain and vanish
elsewhere.

Introducing the approximations into the variational formulation of the boundary value problem together
with a Galerkin technique leads to the following algebraic problem for the determination of the coarse
scale solution at the nodes of the finite element mesh: Kcuc = F . In a second step, a correction ∆u to
uc is computed from a residuum r that is obtained is by projecting of uc on a fine mesh, applying the
fine scale linear system matrix and interpolating on the coarse mesh: Kc∆u = −r.

Once the algebraic problems are solved and the correction to the coarse scale solution is computed, an
approximation for u(x, ω) has been obtained, that can be considered as a response surface, which is, if a
h- or hp-method is adopted, of local character. The approximation quality depends on four parameters:
the FE mesh, the truncation of the Karhunen-Loève expansion (N), the stochastic grid (size and location
of the subdomains) and the wavelet scales. These parameters can be adapted with respect to the point
of most probable failure.
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