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ABSTRACT

For many problems from science and engineering it is impractical to perform experiments on the phys-
ical world directly (e.g., airfoil design, earthquake propagation). Instead, complex, physics-based sim-
ulation codes are used to run experiments on computer hardware. While allowing scientists more flex-
ibility to study phenomena under controlled conditions, computer experiments require a substantial
investment of computation time (one simulation may take many minutes, hours, days or even weeks).
This is especially evident for routine tasks such as optimization, sensitivity analysis and design space
exploration [1].

As a result, the use of various approximation methods that mimic the behavior of the simulation model
as closely as possible (while being computationally cheaper to evaluate), has become standard practice.
This work concentrates on the use of data-driven, global1 approximations using compact surrogate
models (also known as metamodels, or response surface models (RSM)). Examples include: rational
functions, Kriging models, and Support Vector Machines (SVM). Once they are constructed, global
surrogate models provide a fast and efficient way for the engineer to explore the relationship between
parameters (design space exploration), study the influence of various boundary conditions on different
optimization runs, or enable the simulation of large scale systems where this would normally be too
cumbersome. For the last case a classic example is the full-wave simulation of an electronic circuit
board. Electro-magnetic modeling of the whole board in one run is almost intractable. Instead the board
is modeled as a collection of small, compact, accurate replacement surrogate models that represent the
different functional components (capacitors, resistors, ...) on the board. In this way simulations can be
literally pieced together.

However, in order to come to an acceptable approximation, numerous problems and design choices
need to be overcome: what data collection strategy to use, what model type is most applicable, how
should model parameters be tuned, how to optimize the accuracy vs computational cost trade-off, etc.
Particularly important is the data collection strategy. Since data is computationally expensive to ob-
tain, data points must be selected iteratively, there where the information gain will be the greatest. A

1Note the difference between global surrogate modeling as opposed to local surrogate modeling. In the global case, opti-
mization is not the goal but rather a consequence. The accuracy requirements are also higher and the data collection strategy
is different. Nevertheless the two are not disjunct, advances in one type can provide insights for the other.
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sampling function is needed that minimizes the number of sample points selected in each iteration, yet
maximizes the information gain of each iteration step. This process is called adaptive sampling, but
is also known as active learning, Optimal Experimental Design, and sequential design. Together this
makes that there are an overwhelming number of options available to the designer: different model
types, different experimental designs, different model selection criteria, etc.

However, in practice it turns out that the designer rarely tries out more than one subset of options. All
too often, surrogate model construction is done in a one-shot manner. Iterative and adaptive methods, on
the other hand, have the potential of producing a much more accurate surrogate at a considerably lower
cost (less data points) [2]. We present a state-of-the-art research platform that provides an automatic,
flexible and rigorous means to tackle such problems and that can easily be integrated in the engineering
design process. The platform in question is the the SUrrogate MOdeling Toolbox (SUMO).

The SUMO Toolbox is an adaptive tool that integrates different modeling approaches and implements
a fully automated, adaptive global surrogate model construction algorithm. Given a simulation engine,
the toolbox automatically generates a surrogate model within the predefined accuracy and time limits
set by the user (see figure 1). However, at the same time keeping in mind that there is no such thing
as a ’one-size-fits-all’, different problems need to be modeled differently. Therefore the toolbox was
designed to be modular and extensible but not be too cumbersome to use or configure. Different plugins

are supported: model types (neural net-

Figure 1: Automatic Adaptive Surrogate Modeling

works, Kriging, splines, ...), model param-
eter optimization algorithms (BFGS, GA,
PSO, ...), adaptive sample selection (density
based, gradient based, ...), and sample eval-
uation methods (local, on a cluster or grid).
The behavior of each component is config-
urable through a central XML configuration
file and components can easily be added,
removed or replaced by custom, problem-
specific, implementations.

Our approach has been successfully ap-
plied to a very wide range of fields rang-
ing from combustion modeling in chemistry
and metallurgy, semi-conductor modeling
(Electro Magnetism), aerodynamic mod-
eling (aerospace), to structural mechanics
modeling in the Car industry. Its success
primarily due to its flexibility, self tuning
implementation, and its ease of integration
into the larger computational science and
engineering pipeline.
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