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ABSTRACT

We are interested in the numerical approximation of steady hyperbolic problems

div f(u) = 0, u = g on the inflow boundary (1)

which are defined on an open setΩ ⊂ R
d, d = 2, 3 with weak Dirichlet boundary conditions defined on

the inflow boundary1. In (1), the vector of unknownu belongs toRp, and the fluxf is f = (f1, . . . , fd).

The target example we aim at is the system of the Euler equations with a perfec gas equation of state, but
the method can be extended to other problems (see e.g. [1]). In the recent years, there have been many
researches to produce really robust and high order schemes for equations of the type (1) and in particular
for the Euler equations. In this paper we are concerned with the approximation of these equations on
conformal unstructured meshes. We restrict our-self to thecase of two dimensional triangular type
meshes, even-though things can be made more general [2].

One may quote the class of ENO/WENO schemes and the class of Discontinuous Galerkin schemes.
In the ENO/WENO case, (1) is approximated by a finite volume scheme where the entries of the flux
are evaluated by a high order reconstruction polynomial. Inour opinion, the main drawback of this
approach is its algorithmic complexity and the non compact nature of the computational stencil : the
average value ofu in the cellC is updated by using its neighbors, and the neighbors of neighbors,
and so on, depending on the expected accuracy. The non compactness of the stencil is also a serious
drawback for the parallelisation of the code. In the case of DG schemes, the solution is approximated
by a reconstruction function that is generally discontinuous across the interface of the elementsK of
the mesh. The solution of (1) is updated thanks to a local weakform of equation (1) combuned with
a polynomial representation of the data inK, the flux through the edges ofK are approximated by
numerical flux functions. The formulation is very local and also very flexible but the number of degrees
of freedom grows very quickly as the degree of the polynomialonK increases.

1
~n is the inward normal.



stays very local, as in the DG methods, but the number of degrees of freedom grows less quickly, even
in 3D. The price to pay is to impose the continuity of the approximationu as in standard finite element
methods. Indeed, the RD schemes can be seen as finite elementswhere the test functions may depend
on the sought solution. This class of scheme is having a growing interest (see [3, 4, 5]) but has mainly
been developed for second order accuracy only, see however [6] for different but related approach on
structured meshes. In this paper, we are interested in showing how the methods we have developed in
previous papers can be extended to very high accuracy, even in the case of the Euler equation, at a
relatively moderate price.

During the conference, we will explain the implicit versionof the scheme. Several computational ex-
amples will be presented with, hopefully, our first 3D results on an M6 wing.
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Figure 1: Pressure on a Naca0012 airfoil,M∞ = 0.85, 2◦ of incidence. Computed on a triangular
unstructured mesh.
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