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ABSTRACT

Tissue adaptation and the mechanical condition within biological tissues are complex and mutually
dependent phenomena. In this contribution, a computational model is presented to investigate the inter-
action between collagen fibril architecture and mechanical loading conditions in the cornea and sclera
tissue. On the micro-level, collagen fibrils are assumed to crimp into the shape of a cylindrical helix
when the tissue is unloaded (Figure 1). The constitutive model for individual fibrils is derived from
the nonlinear relation between the 1. Piola-Kirchhoff fiber stress Pfib and the fiber stretch λfib of an
extensible helical spring including the fully extension of the spring as a limit case. On the macro-level,
the collagen network in eye tissues is represented by means of two families of collagen fibrils. The
orientations of individual collagen fibrils e0 within each family (famα with α = 1, 2) is considered to
be symmetrically dispersed by means of a normalized von Mises distribution in the plane spanned by
the two vectors Mfamα

1 -Mfamα
2 of the orthonormal frame Mfamα

j , where Mfamα
1 is the mean direction

(Figure 2). Following the idea of Gasser et al. [1] a generalized structure tensor is introduced for each
fibril family

Hfamα = [(1− κ)M1 ⊗M1 + κM2 ⊗M2]famα (1)

with a single dispersion parameter κfamα ∈ [0; 1/2] representing the two-dimensional fibril dispersion
in a integral sense. Let the strain energy density of eye tissues be composed of an isotropic part and two
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Figure 1: Reference configuration of a
single crimped collagen fibril.
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Figure 2: Graphical representation of the distributed
fibril orientations e0 of one fibril family



anisotropic parts representing the energy contribution of the extrafibrillar matrix and of the two families
of crimped collagen fibrils with dispersed orientations

W = c(IC − 3) +
2∑

α=1

∫ √
ĪV

famα
C

1
Pfib(λ)dλ with IC = trC, ĪV

famα
C = Hfamα : C (2)

under consideration of the incompressibility constraint IIIC = detC = 1.
The fundamental hypothesis of the proposed remodeling theory is that the orientation of individual col-
lagen fibrils rotate such that after remodeling the collagen network can be again characterized by two
generalized structural tensors of the form (1). Accordingly, the biomechanically induced remodeling
process can be decomposed into the reorientation of the orthonormal frame Mfamα

j and into the varia-
tion of the dispersion parameter κfamα of each collagen fibril family. The scalar function used for the
definition of the stress based remodeling stimulus is postulated as

Γ =
{

τ2/τ1 for τ2 ≥ 0
0 for τ2 < 0 .

with τ =
3∑

i=1

τini ⊗ ni and τ1 ≥ τ2 ≥ τ3 (3)

Herein the spectral decomposition of the Kirchhoff stress tensor τ is introduced, where τi and ni are
the corresponding eigenvalues and eigenvectors, respectively. The target directions Mtarα

j of the reori-
entation process of Mfamα

j defined at the reference configuration are chosen such that at the current
configuration all collagen fibrils tend to reorient into the n1-n2 plane, while the mean fibril directions
will be located between n1 and n2 [2]

Mtar1
1 = F<[cos(arctanΓ)n1 + sin(arctan Γ)n2]

Mtar2
1 = F<[cos(arctanΓ)n1 − sin(arctanΓ)n2]

Mtarα
2 = Mtarα

3 ×Mtarα
1 , Mtarα

3 = n3F/||n3F||
with M = F<(m) =

F−1m
||F−1m|| . (4)

The temporal evolution of the frames Mfamα
j and of the dispersion parameters κfamα can be expressed

by first order rate equations

Ṁfamα
j = ωfamα ×Mfamα

j with ωfamα =
ωtarα

t∗ω
Ntarα

ω

κ̇famα =
1
t∗κ

(κtarα − κfamα) with κtari = Γ/2 ,
(5)

where ωtarα = ωtarαNtarα
ω is the Rodrigues rotation vector of the rotation tensor Rtarα = Mtarα

j ⊗
Mj

famα. In (5) t∗ω and t∗κ can be interpreted as time relaxation parameters of the reorientation process.
The remodeling process is introduced into an incompressible finite shell formulation [3], where the
incompressibility constraint is enforced through elimination of displacement and strain variables. Fi-
nally, the presented approach is applied to a computational human eye model considering the cornea
and sclera tissue. After remodeling the predicted fiber morphology correlates well with experimental
observations from X-ray scattering data.
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