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ABSTRACT

In the past decade, industry is increasingly focused on the behaviour of materials in micro- and nanosys-
tems. At the level of many microsystems, metallic structures and films are used ranging from sizes of
a few microns to hundreds of microns. The scientific community has given a lot of attention to this
subject, in particular in the range where size effects have a dominating contribution.

This presentation focuses on a full classification and computational modelling of different size effects,
related to different underlying physical mechanisms in the crystalline microstructure. To this purpose,
size effects in the plastic response of thin Al structures and films have been measured and modelled
accordingly. Within this context, the following aspects will be shortly addressed:

• first-order size effects, highlighting the influence of the ratio between the size of grains and the
characteristic dimensions of micro-components [1, 2]:

– processing-induced size effects, studied on the basis of mechanical cutting and laser cutting
of small scale specimens

– grain boundary induced size effects

– surface-induced size effects, related to the presence of an outer free surface

– statistical size effects, related to the statistical variation of the number of grains in miniatur-
ized specimens [3]

• second-order size effects, studied by a strain gradient crystal plasticity approach, which accounts
for essential short-range dislocation interactions [4, 5, 6, 7].

The computational description of the FCC behaviour relies on a recently developed strain gradient de-
pendent crystal plasticity approach, which incorporates an intrinsic scale dependence [8, 9, 10, 11]. The
heterogeneous deformation-induced evolution and distribution of geometrically-necessary dislocations
(GND’s) are incorporated into a physically based continuum theory of crystal plasticity, which is briefly



presented. Additional boundary conditions are formulated at the grain boundaries, obstructing the slip
at the slip system level in the direction perpendicular to those boundaries. At the free (external) sur-
faces, the GND densities are prescribed to be zero, which allows to capture an intrinsic size dependence
upon varying grain size and/or sample size.

Comments on the physical justification and interpretation of the higher-order terms will be presented.
An idealized dislocation pile-up configuration is considered, for which a sharp comparison between
discrete and continuum solutions can be made. The most rigorous connection in this context has been
established by Groma et al. [12] on the basis of statistical arguments. The resulting higher-order theory
has been demonstrated to correlate well with discrete dislocation simulations [13]. In the present con-
tribution we demonstrate how a virtually identical theory can be formulated on a purely deterministic
basis thus providing additional insight into the origin of the nonstandard terms in crystal plasticity.
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