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ABSTRACT

In this paper, we consider the problem of the a posteriori error estimation associated with the compu-
tation of a finite element approximate solution uH ∈ VH of a linear or nonlinear problem in elasticity.
A classical approach [1] consists in setting the error estimation problem in a residual form as

aΩ(z,v) = `(v)− aΩ(uH ,v) =: R(v), ∀v ∈ V ,
where aΩ(u,v) =

∫
Ω σ(u) : ε(v)dω, `(v) is the forcing function, R(v) is the residual, and the consti-

tutive relation σ = C(ε) is possibly nonlinear.

Several methods [1] start from that global problem and replace it by a series of local problems, posed
either on the elements of the finite element mesh, or on the so-called stars, which are the unions of the
elements touching one of the Nv vertices of the finite element mesh. Most of these approaches require
the computation of equilibrated fluxes at the global level, that are then used as boundary conditions on
the local problems. Flux-free methods [2,3] were also developed that bypass this equilibration require-
ment by using the fact that the family of finite element interpolation functions is a partition of unity. We
follow here more particularly the approach proposed in [3]. The local problems are then cast as: find
zi ∈ VΩiH

such that

ai(z
i,v) = R

(
Φi
H(v −Πv)

)
, ∀v ∈ VΩiH

, 1 ≤ i ≤ Nv,

where VΩiH
is the restriction of VH on Ωi

H , and extended to Ω with zeros. The introduction of the
operator Π is necessary when considering the very popular situation of linear interpolation functions in
the finite element approximation, to ensure the solvability of the local problems. A pointwise projection
operator was proposed in [3] for Π, but it cannot be used in the dual formulation that will be introduced
further on. We therefore introduce a new operator ΠΩ : V → VH defined by

ΠΩv(x) =

Nv∑

i=1

Ψi
H(x)

∫

Ω
Φi
Hv dΩ =

Nv∑

i=1

Φi
H(x)

∫

Ω
Ψi
Hv dΩ,



where the {Ψi
H}1≤i≤Nv are defined by

Ψi
H =

Nv∑

j=1

[M−1]ij Φj
H(x), 1 ≤ i ≤ Nv

with [M−1] the inverse of the mass matrix [M ] defined by [M ]ij =
∫

Ω Φi
HΦj

H dΩ, 1 ≤ i, j ≤ Nv .

Following the work in [4,5], a dual formulation based on the principle of minimizing the complementary
energy is introduced to obtain a guaranteed upper bound for z. In practice, we introduce on each star
Ωi
H , a new variable qi, in the space of second-order tensors with coordinates in L2, representing a

statically admissible stress field over Ωi
H , in the sense that





Divxqi = (ΠΩ∗
Ω − Id)(Φi

HfH)−ΠΓN∗
Ω (Φi

HgH) + ΠΓint∗
Ω (Φi

HjH) in Ωi
H

qi · n = Φi
HgH on ΓN ∩ ∂Ωi

H

Jqi · nK = −Φi
HjH on Γint

,

where fH , gH and jH are known explicitely and depend on the data of the problem and on the approx-
imate solution uH . The operators ΠΩ∗

Ω , ΠΓN∗
Ω and ΠΓint∗

Ω all derive explicitely from the definition of ΠΩ

and have their image in VΩiH
. Thanks to the definition of these operators, when all physical loads over

Ω are polynomial, so are those of the local problem above. Hence the results in [4,5] hold and q i can
be explicitely constructed over each star.

For linear constitutive relations, we then have that 2πc(q̂) ≥ ‖z‖2Ω, where πc(·) is the complementary
energy and q̂ =

∑Nv
i=1 q

i. Provided that certain conditions of convexity [6] or monotonicity [7] of
the potentials associated with the constitutive relation are verified, corresponding bounds for nonlinear
problems can also be derived, based on that statically admissible stress field q̂.

Examples in 2D and 3D solid mechanics assert the presented results.
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