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ABSTRACT

Considering the mechanical behavior of elastic bodies, one has to deal with several non-linear effects.
We present a methodical approach for a flexible numerical simulation in mechanics, which suits various
problem classes. Here, the main focus is on the efficient discretization and numerical solution of single-
and multi-body contact problems in linear and non-linear elasticity on complex geometries in 3D.

In the mathematical description of a single-body contact problem, the originally global non-linearity,
i. e. non-penetration of the body and the rigid obstacle, is reformulated as a set of pointwise inequal-
ity constraints. More precisely, if we assume linear elastic material behavior, the displacement field
u : Ω → R3 is given as the solution of the free boundary value problem

−div (σ(u)) = f in Ω,
u = 0 on ΓD,

σ(u)n = p on ΓN ,
(1)

with the contact conditions

σn(u) ≤ 0, σt(u) = 0, u · n ≤ dn, (u · n− dn)σn(u) = 0 on ΓC . (2)

Here, we decompose the boundary ∂Ω = ΓD∪ΓN ∪ΓC , denote the outer normal by n, and measure the
initial distance in direction n between ΓC and the obstacle by the smooth gap function dn. Furthermore,
f and p are given force densities, σ is the linear stress tensor, and we have σn = σnn + σt.

It is well-known that (1), (2) can equivalently be written as a constrained minimization problem of
a quadratic energy functional J over the convex set K of admissible displacements and is uniquely
solvable. Then, the problem (1), (2) can be discretized using standard finite element techniques. The
emerging system is solved by an adaptive monotone multigrid method of optimal complexity, see [3],
which does neither use regularization nor an outer iteration but, instead, deals with the constraints by a
non-linear block Gauß-Seidel smoother on the finest grid. We employ parallel computing.

In case of large deformations ϕ = id+u and non-linear material behavior, the energy functional J be-
comes non-convex. Besides, a linearization of the non-penetration condition as in (2) cannot effectively



be used. Hence, we choose a level-set approach to compute a signed distance function d : R3 → R,
which measures the distance to the rigid obstacle, and enforce the exact geometric contact condition by

g(ϕ) := max
Ω

(d ◦ϕ) ≤ 0.

Note that, here, the function g representing the constraints is neither affine nor smooth in general.
Then, the resulting non-convex constrained minimization problem can be solved by a non-smooth SQP
method applying the presented multigrid method to the constrained quadratic subproblems with the
generalized derivative ∂g as obstacle direction.

In the multi-body case, i. e. Ω = Ωm ∪ Ωs and, hence, u = (um,us), the non-linearity due to contact
has a completely different appearance. The contact conditions for the transmission of forces between
two deformable bodies read as

σn(um ◦Φ) = σn(us) ≤ 0, [u] ≤ dΦ, ([u]− dΦ)σn(us) = 0 on Γs
C ,

where Φ is a bijective contact mapping and [u] := (us − um ◦ Φ) · nΦ is the jump in nΦ-direction.
The normal field nΦ and the inital gap dΦ are defined by Φ, which is a priori unknown and usually
approximated by suitable normal projections in case of a linear material.

The discretization of the coupling constraints is done in a weak sense by a modified mortar finite
element method, see [1], proposing the use of an L2-projection between non-matching meshes to allow
for optimal error estimates. Here, we develop an efficient method to compute the emerging discrete
transfer operator for complex geometries. We compute triangulated intersections of opposite element
faces in a locally adjusted projection plane but carry out the necessary numerical quadrature on possibly
warped contact boundaries directly, see [2, 4]. Then, the transfer operator is used to perform a local basis
transformation so that, again, the non-linear multigrid solver [3] can be applied. To simulate “glued”
interfaces, we can also prescribe equality constraints.

Our approach has to be recognized in the much more general context of (non-conforming) domain
decomposition methods. A stable and efficient information transfer, not only between non-matching
meshes in 2D and 3D but also between different discretizations and even different models, is crucial for
the proof of approximation error estimates as well as of convergence properties of iterative solvers.

The simulation of multi-body contact with large deformations requires the incorporation of the discrete
coupling operator into the outer iteration. Since the local coupling is only reasonable for small defor-
mations, this could imply additional box constraints in each SQP step and, thus, affect convergence. In
addition, the signed distance function has to be recomputed during the iteration.

Finally, we illustrate that our methods are well suited for the simulation of other contact phenomena
such as Coulomb friction and thermoelasticity. Moreover, we consider dynamic problems with biphasic
materials and a system of Allen-Cahn type equations coupled with elasticity.
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