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ABSTRACT 

The present paper deals with the validated numerical simulation of steady 
incompressible viscous flow in a human carotid artery and its branch. This arterial tree, 
especifically the bifurcation of the common carotid artery (into the internal and external 
carotid arteries), is a well known site of atheromatous plaque formation. These plaques 
grow progressively leading to stenosis and can suddenly rupture causing instantaneous 
thrombi and emboli, thus infarction of irrigated tissues (stroke). Steady flow in the 
carotid artery occurs when the human heart, suffering from chronic heart failure, 
undergoes implantation of a small continuous-flow ventricular assist device (VAD). 
Abnormal wall shear stress, pressure and low washout regions may occur, which in turn 
could trigger plaque formation and growth [1, 2]. 

METHODS 

A P1-P1 stabilized SUPG/PSPG/CONT finite element method was used to approximate 
the incompressible Navier-Stokes equations. Blood flows were simulated at Reynolds 
320 for different but plausible outflow conditions corresponding to normal and 
abnormal flow separation at the carotid bifurcation. A sequence of nine grids was used 
to ascertain grid independence with a Zienkiewicz-Zhu a posteriori error estimator [3, 
4]. These simulations agreed with experimental measurements obtained from fluid flow 
within a silicon model of the carotid. A time-resolved stereoscopic PIV test rig 
generated these experimental flow measurements. 

RESULTS 

We have observed that the flow field is extremely sensitive to inlet boundary condition. 
To compare the numerical prediction to the experimental measurements we have 
imposed at the inlet the measured velocity profile. The flow ratio is most often assumed 
to be equal to 7:3 (between internal and external branches) under normal conditions. 
However with VAD, the flow ratio has not been assessed. Therefore in the present 



 

work, the flow ratio ranges from 7:3 to 3:7. The latter corresponds to a severe stenosis 
in the internal carotid.  The outflow boundary conditions do not markedly affect the 
flow in the trunk upstream from the transition zone. With a flow ratio 7:3, the flow field 
at the bifurcation divides between the two branches without strong recirculation in the 
carotid sinus. With decreasing flow ratio, high velocity isocontours in the transition 
zone moves toward the stem axis. With a flow ratio 3:7, the flow is deported into the 
external carotid increasing the strength of the separation region in the bifurcation 
segment. The maximum pressure point is located near to the maximum WSS on the 
carotid bifurcation. These values increase in intensity as the flow ratio rises from 7:3 to 
3:7. The arterial wall undergoes remodelling under continuous flow after VAD 
implantation. An increase in WSS and stagnation pressure at this location favour further 
arterial remodelling. 
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Figure 1 Mesh refinement  
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Figure 2 WSS variation for various flow rate ratios 


