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ABSTRACT

The numerical simulation of biomechanical problems based on patient specific models puts high de-
mands an the efficiency and reliability of the simulation methods as well as on the representation of the
geometries under consideration. We present an abstract multiscale framework for the parallel solution
of non–smooth and non–convex minimization problems, as arise from the modeling of soft tissues and
biomechanical processes.

Computing large deformations of elastic bodies, such as soft tissues or rubber, yields non–convex and
constrained minimization problems. After discretizing this minimization problems by, e.g., finite ele-
ments, it can be written as

uh ∈ Bh ⊂ Sh : J(uh) = min! (1)

whereSh denotes the finite element space,J : Sh → R is the at least continuous differentiable elastic
energy andBh = {v ∈ Sh | φ ≤ v ≤ φ} is a convex and non-empty set of admissible solutions
depending onφ, φ ∈ Sh, given a priori. For one-sided contact problems and Lagrangian finite elements
of first order, for example, the setBh of admissible displacements takes the formBh = {v ∈ Sh |
v(p) · n(p) ≤ φ(p), p ∈ Ch}. HereCh is the set of all nodes on the potential contact boundary of the
finite element mesh associated withSh, n(p) is some given normal direction atp, andφ is the gap
function measuring the distance in directionn to the obstacle.

The efficient solution of this type of minimization problem tends to be a difficult task even for convex
energiesJ due to the presence of the constraintsφ, φ. For non-convex energies, moreover, one addition-
ally has to employ a globalization strategy (like, e.g., a trust–region strategy [CL94, GST06, GK08]) in
order to succeed in computing at least a local minimizer. We present an abstract multiscale approach,
which allows for the treatment of constrained convex minimization problems as well as non-convex
minimization problems. To this end, we introduce the multilevel splitting

Sh = Sj ) . . . ) S0

which may be associated with finite element discretizationsfor different mesh-sizesh0 > · · · > hj .
In case of convex energiesJ , we follow the idea of monotone multigrid methods, see [KK01]: in each



of the subspacesSi successive correctionssi are applied creating a sequence(uν)ν>0 ⊂ Bh such that
J(u0) ≥ J(u1) ≥ · · · anduν converges to the minimizer of (1). In order to guarantee the admissibility
of the iteratesuν , the coarse grid spacesSi for 0 ≤ i < j are equipped with non-standard and non-linear
basis functions, which allow for a representation of the active setA(uν) = {p ∈ Ch | v(p) · n(p) =
φ(p)}. This induces a solution dependent multilevel splittingSh = Sj ) Sj−1(uν) . . . ) S0(uν) which
allows for the robust and efficient solution of convex constrained minimization problems of the form
(1) with optimal complexity, cf., [KK01,K05].

These methods can be generalized to the case of frictional contact and saddle point systems as arising
from the discretization of biphasic materials as, e.g., cartilage. For the case of friction, for example, the
non-convex frictional energy has to be resolved only withinthe fine grid spaceSj = Sh, whereas on the
coarser levels0 ≤ i < j a constrained quadratic approximation is used for increasing the convergence
speed of the multiscale method. This requires the usage of level dependent energiesJi on different
levels i, which is different to the case of linear problems but reflects the non-linear and non-smooth
structure of the frictional contact problem.

In case of non-convex energiesJ , the subspace correctionssi have to be balanced carefully with the
energyJ in order to ensure the global convergence of the non-linear multiscale iteration process. Most
globalization strategies require the solution of large-scale quadratic minimization problems like

sν ∈ Sh : 〈sν ,∇J(uν)〉 +
1

2
〈sν , B(uν)sν〉 w.r.t. ‖sν‖∞ ≤ ∆ν anduν + sν ∈ Bh (2)

whereB(uν) ≈ ∇2J(uν), and∆ν is the trust region radius, cf., [CL94]. Within this trust region, the
quadratic model (2) is assumed to be a good approximation of the non-quadratic energyJ . If B(uν)
is a symmetric, positive definite matrix this enables us to employ a projected cg-method or monotone
multigrids [KK01] to solve (2) sufficiently accurate.

However, using the decompositionSj = Sh ) . . . ) S0, we can also follow [GK04, GST06] and
propose a multilevel trust–region algorithm. It’s paradigm is to use a projection of a current fine-level
iterate and a particular coarse level model to compute a coarse level correction. This correction is
interpolated and applied if a certain fine level energy reduction is achieved. In particular, after projecting
the current iterate on leveli, i.e.ui−1 = Piui ∈ Si−1, a trust–region algorithm is employed to solve

si−1 ∈ Si−1 : J(ui−1 + si−1) + 〈si−1, Ri∇J(ui) −∇J(ui−1)〉 w.r.t. ui−1 + si−1 ∈ Bi−1

whereRi : Si → Si−1 is a restriction operator andPi : Si → Si−1 theL2 projection. Moreover,Bi−1 is
chosen such thatui +RT

i si−1 ∈ Bi. Hence, this approach yields a fully non–linear multigrid algorithm,
which shows to be highly efficient for applications in non-linear mechanics and biomechanics..
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