A multiscale method for weakly coupled non-harmonic oscillators

*Gil Ariel¹, Bjorn Engquist² and Richard Tsai³

¹ The University of Texas at	² The University of Texas at	³ The University of Texas at
Austin	Austin	Austin
1 Univ. Sta C1200, Austin,	1 Univ. Sta C1200, Austin,	1 Univ. Sta C1200, Austin,
TX78712, USA	TX78712, USA	TX78712, USA
ariel@math.utexas.edu	engquist@ices.utexas.edu	ytsai@ices.utexas.edu

Key Words: multiscale computations, oscillatory problems, slow variables.

ABSTRACT

A multiscale method for computing the effective slow behavior of a system of weakly coupled non-harmonic oscillators is presented. The oscillators may be either in the form of a periodic solution or a stable limit cycle. Furthermore, the oscillators may be in resonance with one another and thereby generate some hidden slow dynamics. The proposed method relies on correctly tracking a set of slow variables whose dynamics is closed up to a small perturbation, and is sufficient to approximate any variable and functional that are slow under the dynamics of the ODE. The advantages of the method is demonstrated with a few examples. Particular emphasis is given to the effect of synchronization. Harmonic oscillators with slowly varying properties are also studied. The algorithm follows the framework of the heterogeneous multiscale method.

REFERENCES

- [1] G. Ariel, B. Engquist, and Y.-H. Tsai. A multiscale method for stiff ordinary differential equations with resonance. To appear, Math. Comp.
- [2] W. E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87-132, 2003.