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ABSTRACT 

Recent decades were characterized by intensive development of new fibrous 
composites. Particularly, the composites of mineral fibers and matrices (oxides, borides, 
ceramics, etc.) were developed for medical applications (for instance, to replace 
biodegradable polymer composites for bones repair), for construction industry 
(fireproof parts of building, environment-proof parts of bridges, etc.), to enhance 
working temperature of structural materials for hot parts of machines, and so on [1]. 

Mineral matrices are typically polycrystalline substances. The sizes, shapes, and 
orientations of the crystallographic axes of crystallites (grains) are usually random. So, 
the mineral matrices are heterogeneous materials consisted of anisotropic components  
with stochastic structure. Often mineral matrices consist of different types of 
crystallites, i.e. they are multicomponent materials itself. The stochastic structure of the 
matrix yields fluctuating microstresses and stochastic fractures of individual grains. Due 
to  anisotropy, the grains can fracture or become partially damaged via several fracture 
modes with different probabilities, depending on the stress state of the material. 

We model the matrix on the basis of micromechanics and consider it as homogeneous 
medium with effective properties. Micromechanical boundary value problem for the 
elastic stochastic medium has usual form [2] 
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r  is a random function of rr , it is constant within each crystallite 
and changes stepwise when goes to another crystallite due to change of crystallite type 
and rotation of crystallographic axes. 
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There are several methods to obtain approximate solutions of the problem (1) [2]. These 
solutions allow to calculate random stresses in grains and, upon usage some fracture 
criterions, fracture probabilities of the grains. The homogenization of the problem (1) 
gives the effective elastic moduli of the medium.  

In proposed model it is assumed that the stress state of the matrix at given macrostrain  
results from a stepwise increasing of the macrostrain from zero to given value with 
small step. At each step boundary value problem (1) is solved, fracture probabilities and 
volume fractions of all crystallites are calculated. At initial (strainless) state matrix 
consists of randomly distributed non-damaged crystallites and pores. At certain 
macrostrain first partially damaged crystallites appear, then damaging processes 
progress, some later fully destroyed crystallites are generated, and eventually 
mechanical resistance of the matrix deteriorates. The matrix model is implemented as an 
iterative algorithm. The algorithm generates dependence of macrostresses 〉〈 ijσ  on 
macrostrains 〉〈 ijε  for arbitrary deformation path in a 6-dimensional strain space.  

Fig.1 represents an example of the modeling of a full deformation curve for matrix with 
hexagonal grains. Fig.2 shows the results of the modeling of a bending experiment of a 
composite specimen. The specimen is modeled by standard finite elements method and 
the above described algorithm is used as the constitutive equations for the matrix. The 
non-linear parts of the curves on both figures correspond to matrix damaging processes. 

    
             Fig.1. Simple tension of matrix sample.                    Fig.2. Three-point short beam bending of a  
                                                                                                           unidirectional composite specimen. 
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