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ABSTRACT

At present ordinary differential equations including multiple mixture of integer and fractional deriva-
tives are a natural extension of integer-order differential equations. Notice that fractional calculus have
been used in mechanics [2] and many other fields. However the solution of a equation strongly depends
on the equation form. It should be noted that an analytical solution is extremly limited to the linear form
of equations and includes special functions such as the Mittag-Leffler [4] and others. On the other hand,
a numerical approach [1] is an alternate solution to analytical one.

In this study we will try to extend our previous numerical approach [3] to ordinary differential equations
where multiple mixture of integer and fractional operators occur. We start with a classical ordinary
differential equation defined as

D2x(t) + a1D
1x(t) + a2x(t) = 0 (1)

where D2 = d2

dt2
, D1 = d

dt denotes integer derivatives, a1, a2 are coefficients. We also assumed initial
conditions as x(0) = x0 and D1x(0) = ẋ0. Next we propose another equation in the following form

D2x(t) + b1 0D
αx(t) = 0 (2)

where b1 is a coefficient which is assumed as b1 = aα
1 a1−α

2 and 0D
α denotes a fractional derivative of

a real order α ∈ [0, 1). According to [4] we assume that the fractional derivative of arbitrary order α is
defined as the left-side Riemman-Liouville derivative

0D
αx (t) =

1
Γ (n− α)

dn

dtn

t∫

0

x (τ)
(t− τ)α−n+1 dτ (3)

where n = [α] + 1 and [· ] is an integer part of a real number. In Eqn. (2) we assumed the same
initial conditions as for Eqn. (1). It should be noted that Eqn. (2) is so called an equation with the



memory effect. Both equations (1) and (2) are linear equations and therefore is possible to find analytical
solutions. Such solutions are necessary for direct comparison with numerical results in order to validate
our approach [3].

Next we propose a multi-term ordinary differential equation in the following form

D2x(t) + c1 0D
α1x(t) + c2 0D

α2x(t) + c3x
2(t) = 0 (4)

where c1, c2, c3 denote coefficients, 0D
α1 and 0D

α2 are fractional derivatives defined by formula
(3) and α1, α2 denote real orders of fractional derivatives which satisfy the following conditions:
α1, α2 ∈ [0, 1) and α1 ≥ α2. In this equation we assumed the same initial conditions as for Eqn. (1).
Eqn. (4) may solve numerically due to its nonlinear form.

Fig. 1 shows an example of analytical and numerical solutions of Eqns (1) and (2) respectively.
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Figure 1: Examples of solutions of Eqns (1) and (2): a) the function x(t) over time; b) the first derivative
D1x(t) over time.

Analyzing this figure we can say that the solution obtained from Eqn. (2), where the parameter α varies
between 0 and 1, is general in comparison to the solution obtained by Eqn. (1). It should be noted that
both solutions are quite similar for α = 0.5. Moreover, using own numerical procedure described in [3]
we observe that numerical results quite good reflects the analytical one.

During full presentation we will focus on some details of our numerical treatment and we will explain
how to solve numerically Eqn. (4).
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