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e Ground state theory: (Fermi) HNC summations and optimization
@ View from the top: Parquet diagrams
@ View from above the top: The strength of correlated wave functions

9 Fermions — another problem
@ Fermions in the parquet language
@ 3He-*He-mixtures: Where parquet tells us something

e Boson Dynamics
@ Equations of motion and dynamic response
@ Sum rules and limits



Wave functions, diagrams, and optimization

Where most many-body talk starts...

Postulate a microscopic, strongly Calculate macroscopic properties
interacting Hamiltonian from no other information.
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© Structure
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© Excitations
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@ (Thermo)dynamics

© Surface properties

© Name it we have it. ..
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Why it became necessary: Neutron stars didn't let us fit any data.

Ground state theory: (Fermi) HNC summations and optimization



Correlated wave functions

What looked like a “simple quick and dirty” method (Jastrow):
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An intuitive way to include core
exclusion;

Diagram summation methods
from classical statistics (HNC,
PY, BGY);

Optimization J6E /éu, = 0 makes
correlations unique.

HNC is the only diagram

classification that is in all orders
compatible with optimization;

Ground state theory: (Fermi) HNC summations and optimization



Two-body Euler equations: JE /du, =0

Summarizing its two faces

@ “RPA” version (Campbell, Feenberg 1969)

S(@) = [1 -+ 4mVy n(a)/2q?]
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Two-body Euler equations: JE /du, =0

Summarizing its two faces

@ “RPA” version (Campbell, Feenberg 1969)

S(@) = [1 -+ 4mVy n(a)/2q?]

@ “Bethe-Goldstone” version (Lantto, Siemens
1977)
—VoV/g(r) = [v(r) +w(r)] va(r)

m
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Two-body Euler equations: JE /du, =0

Summarizing its two faces

@ “RPA” version (Campbell, Feenberg 1969)
- -1/2
S(a) = [1+4mV,_n(a)/%q?]

@ “Bethe-Goldstone” version (Lantto, Siemens
1977)

v gt = (r) + (D] Val)

@ “particle—hole interaction”

Vp-n(r)

9(v(r) + = [V /g (n)|
w(n)o(r) 1]

+
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Two-body Euler equations: JE /du, =0

Summarizing its two faces

@ “RPA” version (Campbell, Feenberg 1969)
- —1/2
S(a) = [1+4mV,_n(a)/%q?]

@ “Bethe-Goldstone” version (Lantto, Siemens
1977)

h2
SVAVA(N) = () +w(n]Va(r)
@ “particle—hole interaction”

9(v(r) + = [V /g (n)|
w(n)o(r) 1]

Vp-n(r)

+

@ “induced interaction” w (k).

Ground state theory: (Fermi) HNC summations and optimization

“...it appears that the
optimized Jastrow
function is capable of
summing all rings and
ladders, and partially
all other diagrams, to
infinite order.”

H.-K. Sim, C.-W. Woo
and J. R. Buchler, Phys
Rev. A2, 2024 (1970).



Two-body Euler equations: JE /du, =0

The power of unconstrained optimization

@ All reference to a “Jastrow” wave function has disappeared. Easier and
much faster than optimizing parameters;

@ Generalization to simple non-uniform (plane surface or spherical)
geometry is easy and efficient;

@ Restriction to ux(|r; — rj|) unnecessary and not helpful;
@ Generalizible of FHNC-EL to non-uniform Fermi systems
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Two-body Euler equations: JE /du, =0

The power of unconstrained optimization

@ All reference to a “Jastrow” wave function has disappeared. Easier and
much faster than optimizing parameters;

@ Generalization to simple non-uniform (plane surface or spherical)
geometry is easy and efficient;

@ Restriction to uy(|ri — rj|) unnecessary and not helpful;
@ Generalizible of FHNC-EL to non-uniform Fermi systems

@ Excellent agreement of FHNC-EL for ooy
metallic surface energies with GFMC;

@ Physically intuitive explanation for why
LDA fails;

o (erglend)

@ About an order of magnitude better than
LDA for closed shell atoms.

n
-50
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View from the top: parquet diagrams

A. D. Jackson, A. Lande, and R. A. Smith, Phys. Rep. 86, 55 (1982)

In terms of Feynman diagrams

@ Sum all ladder diagrams with a local, particle-particle reducible
interaction Vp_p(k);
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Define “particle-particle irreducible interaction” V,_,(k, w);
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dependent and energy independent interactions give the same
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View from the top: parquet diagrams

A. D. Jackson, A. Lande, and R. A. Smith, Phys. Rep. 86, 55 (1982)

In terms of Feynman diagrams

(*)]

Sum all ladder diagrams with a local, particle-particle reducible
interaction Vp_p(k);

Define a “particle-hole irreducible interaction” V,_p(k,w);

Localize Vp_n(k,w) = Vp_n(k,&(k)) = Vp_n(k) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Sum all ring diagrams with this local particle-hole irreducible interaction;
Define “particle-particle irreducible interaction” V,_,(k, w);

Localize Vp_p(k,w) = Vp_p(k,&(k)) = Vp—_p(K) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Iterate;
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A. D. Jackson, A. Lande, and R. A. Smith, Phys. Rep. 86, 55 (1982)

In terms of Feynman diagrams

(*)]

Sum all ladder diagrams with a local, particle-particle reducible
interaction Vp_p(k);

Define a “particle-hole irreducible interaction” V,_p(k,w);
Localize Vp_n(k,w) = Vp_n(k,&(k)) = Vp_n(k) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Sum all ring diagrams with this local particle-hole irreducible interaction;
Define “particle-particle irreducible interaction” V,_,(k, w);

Localize Vp_p(k,w) = Vp_p(k,&(k)) = Vp—_p(K) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Iterate;
Calculate energy by coupling constant integration.
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View from the top: parquet diagrams

A. D. Jackson, A. Lande, and R. A. Smith, Phys. Rep. 86, 55 (1982)

In terms of Feynman diagrams

(*)]

Sum all ladder diagrams with a local, particle-particle reducible
interaction Vp_p(k);

Define a “particle-hole irreducible interaction” V,_p(k,w);

Localize Vp_n(k,w) = Vp_n(k,&(k)) = Vp_n(k) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Sum all ring diagrams with this local particle-hole irreducible interaction;
Define “particle-particle irreducible interaction” V,_,(k, w);

Localize Vp_p(k,w) = Vp_p(k,&(k)) = Vp—_p(K) such that energy
dependent and energy independent interactions give the same
contribution to S(k);

Iterate;
Calculate energy by coupling constant integration.

Re-derive HNC-EL !

Ground state theory: (Fermi) HNC summations and optimization View from the top: Parquet diagrams



Doing better — beyond Jastrow, beyond parquet

View from “above” the top

Variational wave function:

i<j i<j<k

W(1..N) :exp% [Zul(ri)+ZUz(ri7FJ)+ > us(ri )

Optimization §E /éus(ri, rj, rc) = 0 (Campbell PLA 44, 471 (1973)) clearly
lowers energy.

3

Es 1 [d%kd®pdiq Va(p, k, q)[?
W_73!/725( +k+q)

- (2m)°p e(k) +<(p) + ()
Vs(p, Kk, q): effective 3-body vertex
e(k) = h?k?/2mS(k) = t(k)/S(k) “Feynman spectrum.”

= Energy correction in quantitative agreement with MC !

Ground state theory: (Fermi) HNC summations and optimization functions



Triplet parquet

Another view from “above” the top

Perturbation Theory

HNC/EL

Bk Vi(k)

kdp V200V ()V (1 + k)
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nd state theory: (Fermi) HNC summations and o

Many diagrams of random size
and sign, large cancellations
(Jackson, Lande, Guintnk, Smith,
PRB 31, 403 (1985);

parquet’3
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Some are “natural” terms (e.qg.
self-energy insertions), some
totally irreducible



Triplet parquet

Another view from “above” the top

@ Many diagrams of random size
and sign, large cancellations
(Jackson, Lande, Guintnk, Smith,

5 / &k VY 5 / Bk Vi)
T16/ @) ) T16J @ Bl
PRB 31, 403 (1985);
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@ Some are “natural” terms (e.g.
self-energy insertions), some
totally irreducible

1 [ dkd’p V2(k) V2 (p)
1] @x)5p2 tk)t(p)(t(k) + t(p) + t(jp + K|)

1 / Bhd*p V2(k)V2(p)
8 @)% 2(k)t(p)

SFFOE

@ Combined result identical to
variational.

Ground state theory: (Fermi) HNC summations and optimization



Fermions

More approximations — less is known

@ Fermion-HNC and EL a lot messier

Fermions — another problem Fermions in the parquet language



Fermions
More approximations — less is known

@ Fermion-HNC and EL a lot messier

@ Rings: FHNC-EL sums ring diagrams in a collective approximation:

XO(qaw) CO" (qa )

~

1~ Vp_n(d, w)xo(9,w) B 1_\7p7h(q’ I ()

x(q,w) =

where the pole strength hwés)

o) (¢ ) — 2t(q) _ _ ta) _ h?2q?
T s

is chosen such that such that
7 d(hw 7 d(hw |

— 0o — 00

Fermions — another problem Fermions in the parquet language



Fermions

More approximations — less in know

@ Ladder diagrams — “parallel connections”
Not investigated.
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Fermion
More approximations — less in know

@ Ladder diagrams — “parallel connections”
Not investigated.

@ Self-energy insertions — “cyclic chain diagrams”:
A static approximation to “at least” GOW
... as we will see.

Fermions — another problem Fermions in the parquet language



Dynamics — what we can learn from parquet ?

Effective mass of *He-*He mixtures

Why deal with 3He-*He mixtures ?

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something
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Dynamics — what we can learn from parquet ?

Effective mass of *He-*He mixtures

Why deal with 3He-*He mixtures ?

@ Bose component very well understood

@ Low fermion density = Theory should be easy

@ Good experiments

Wave function for a mixture

a 1y 3
\Ilo({ri( )}) — ezV({n })¢0({ri( )})
N(uNﬁ 1 Na,Ng,Ny
!
U({r|( )}) 2| Zﬁ: Z O‘B) rlarj 3| zﬁ: Z u(oz[}'y)(ri’rj’rk) .
o aBy ik

3He-*He-mixtures: Where parquet tells us something
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Dynamics — what we can learn from parquet ?

Effective mass of *He-*He mixtures

Why deal with 3He-*He mixtures ?

@ Bose component very well understood
@ Low fermion density = Theory should be easy

@ Good experiments

Wave function for a mixture

o l
Wo({r@}) = eV Doy}
N(“Ng 1 NH,NL%N7
!
u({r*) leZ WD)+ 50 > U
aB i TaBy ik

@ Energetics of the mixture extremely well reproduced by theory
(E. K. and M. Saarela, Phys. Rep. 232, 1 (1993).)

3He-*He-mixtures: Where parquet tells us something

Fermions — another problem



Effective mass of 3He-*He mixtures

The naive method:

@ Define a “correlated particle-hole state”
Vo n({r®}) = e Na, (),
<bp,h({ri(3)}) is a particle-hole excited state model wave function
@ Define a CBF single particle spectrum
<wp—h| H ’Wp—h>
<‘|’pfh | "’pfh>

= O(p) —B(h),

@ Obtain the effective mass from this spectrum.

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something
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Effective mass of 3He-*He mixtures

The naive method:

@ Define a “correlated particle-hole state”
Vo n({r®}) = e Na, (),
CDp,h({ri(s)}) is a particle-hole excited state model wave function
@ Define a CBF single particle spectrum
<wp—h| H ’Wp—h>
<‘|’pfh | "’pfh>

= O(p) —B(h),

@ Obtain the effective mass from this spectrum.
Why naive ?

@ Misses hydrodynamic backflow. Fix this “by hand” for the time being by
giving the 3He particles a “hydrodynamic effective mass” mj,,.
@ Fermionic effect is “Hartree-Fock like”:
h?k?

(3)

®)(k) = Ug+ 20— — 2 /d3rw () jo(rk)£(rk

£ 0 . i (1) Jo(r k) £(r Ke)
2m3,, 2 ¢

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something



The conventional approach

GOW-approximation for a “self-energy” X(q,w) :
2) =1 [ ) GOk — gl o ) Van. )
Free Green’s function:
Ng,o n 1-ngo
hw —t@)(q) —in  hw —t6)(q) +in
6(q,w) + 60 (q.w),

GO, w) = Ng,o _ Ma.o
£ (K, w) hw —1G)(q) —in  hw —tC)(q) +in

GO(q,w) =

@ = “Hydrodynamic part” Gﬁ,o)(q, w) survives ar zero 3He concentration;

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something



The conventional approach

GOW-approximation for a “self-energy” X(q,w) :
2) =1 [ ) GOk — gl o ) Van. )
Free Green’s function:
Ng,o n 1-ngo
hw —t@)(q) —in  hw —t6)(q) +in
6(q,w) + 60 (q.w),

GO, w) = Ng,o _ Ma.o
£ (K, w) hw —1G)(q) —in  hw —tC)(q) +in

GO(q,w) =

@ = “Hydrodynamic part” Gﬁ,o)(q, w) survives ar zero 3He concentration;

@ = Treat “hydrodynamic” self-energy by equations of motion method.

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something



Effective interaction in the two-impurity limit:

Energy dependent “effective interaction”:

Verr (0, w) = V{¥)(@) + V(@) x*(q,w) V¥ (a)

o t
6@ = G ey

Parquet-prescription to “localize” Vs (q, w)

© Construct RPA static structure function

d(hw !
Skea(@) = - / ) Sm [1§(0.0) + 15(@ Ve (.0 (0.

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something



@ Construct ladder approximation for the same quantity in terms of a
different and yet unspecified local effective interaction, say V| (q)

d(Aw ~
S(@ = [ T0) am 190,00+ P (0.0) Vi@ @)
1 ~
= 1- W Vi(q) .

© Define the average frequency @(q) such that these two forms of the
static structure function are identical for

\7L(q) = veﬁ(qa@) :

e 9@ (9 ()
(V@) =~ a) + 2100(q)

© Insert this h(q) into the energy-dependent effective interaction. Obtain
Weit () = Veir (9, ) = Vi(q) -

© The “Fock term” if (F)HNC is a “single pole approximation” to GOW.

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something



How important is all of this ?

@ Zero concentration limit from independent
calculation

dynamic ——
static —
22 experiments

0.02 0.06 0.10
He-3 concentration

Experiments: S. Yorozu, H. Fukuyama, and H. Ishimoto, Phys. Rev. B 48,
9660 (1993)

Theory: E. K., J. Paaso, M. Saarela, K. Schorkhuber, and R. Zillich: Phys.
Rev. B B 58, 12282 (1998).

Fermions — another problem 3He-*He-mixtures: Where parquet tells us something
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How important is all of this ?

@ Zero concentration limit from independent
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@ “static” or “FHNC” over-estimates
Fermi-Liquid effect

@ “dynamic” theory in quantitative agreement
with experiments
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How important is all of this ?

— @ Zero concentration limit from independent
calculation

@ “static” or “FHNC” over-estimates
Fermi-Liquid effect

@ “dynamic” theory in quantitative agreement
with experiments

dynamic ——
22 static —

experiments | @ Parquet ideas are not completely useless
0.02 0.06 0.10 after all :)
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Dynamics (the clean but tedious way)
Equations of motion

Wave function for excited states:

—iEot/h FedY |wy)
(Wo|e2V  FiFesdV|w)]L/2

w(t) =e

9

|[Wo): model ground state, 6U(t): excitation operator
Bosons:
q

Fermions:

(1) (2) T At
u(t) = Zéu t)ahan + Z ougy o n(t)abal, anan
p.’h’p/7h/

Action principle:

6S=46 ttz dt<\U(t)’H + Uext(t) — ihaat‘\ll(t)> =0.

Boson Dynamics Equations of motion and dynamic response



Linear response:

@ Linearization:
[W(t)) =0 [W(t)) + Vo)

@ Induced fluctuations:
sip(rit) ~ (Vo p(r) | 8W(1)) +c.c.

airit) ~ (o lj(r) | 8W() +c.c.

@ Dynamic response function:

p(r,w) /d3r X(r, 1 w)Uayt (1, w)

@ Dynamic structure function;

1
S(r,r';w) = —=Smx(r,r’;w)
T

Boson Dynamics Equations of motion and dynamic response



Rationalization of Pair Fluctuations

@ “Feynman approximation”
su®(q,q’) = 0 off by a factor of two; 250 ‘

oo
00°%%0

10 2.0
k (A
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Rationalization of Pair Fluctuations

@ “Feynman approximation”

su®(q,q’) = 0 off by a factor of two; 250 ‘
(9.a") y . <o
@ One-body fluctuations are insufficient 2001 ]
to understand the excitations in “He; ol "
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Rationalization of Pair Fluctuations

@ “Feynman approximation”
su®(q,q’) = 0 off by a factor of two; 250 ‘

@ One-body fluctuations are insufficient 200 ]
to understand the excitations in “He:

oo
00°%%0

@ Pair fluctuations should become
important if the wavelength of
excitations is comparable to 50 ¢ ]
inter-particle distance.

10 2.0
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Rationalization of Pair Fluctuations

@ “Feynman approximation”
su®(q,q’) = 0 off by a factor of two; 250 ‘

@ One-body fluctuations are insufficient 200 ]
to understand the excitations in “He:

oo
00°%%0

@ Pair fluctuations should become
important if the wavelength of
excitations is comparable to 50 ¢ ]
inter-particle distance.

10 2.0
k (A

@ A similar effect is to be expected in
3He.
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Boson equations of motion
Where the hard work begins

Include “pair” excitations

@ Build a basis of 1 and 2 phonon states (“Correlated Basis Functions”):,
let S0H = H — Eg

XCBF(q7w) _ {GCBF(q’w) _’_G*CBF(q’_w)}
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Boson equations of motion
Where the hard work begins

Include “pair” excitations

@ Build a basis of 1 and 2 phonon states (“Correlated Basis Functions”):,
let S0H = H — Eg

XCBF(q7w) _ {GCBF(q’w) _’_G*CBF(q’_w)}

@ Phonon propagator
G (q,w) = S(q) [w — £(q) + in + X(q,w)]
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Boson equations of motion
Where the hard work begins

Include “pair” excitations

@ Build a basis of 1 and 2 phonon states (“Correlated Basis Functions”):,
let S0H = H — Eg

XCBF(q7w) _ {GCBF(q’w) _’_G*CBF(q’_w)}

@ Phonon propagator
G (q,w) = S(q) [w — £(q) + in + X(q,w)]

@ Self-energy (“renormalized” and “unrenormalized”)

 Ty(q.w)
Y(q,w) = 1-%4(q,w)/e(q)

1
Tu(a,w) = =5 > (alFTHF [a1,a2) x
q1..94

—1
x [(d1, 92| FT(6H — hw)F |ds,a4)] ~ (ds, 4| FT6HF |q)

Boson Dynamics Equations of motion and dynamic response



Brillouin-Wigner-CBF (Jackson 1962)

Also known as “uniform limit approximation”

Just keep diagonal term:
(91, 92| FT(6H — hw)F |da, da) ~ S(01)S(d2) [(as) + £(d2) — w] 0g,,050a2.as
Then

[(q| FToHF |q1,qz>\

1
Ezq: (o) + 2(02) —

RPA:  duz (i, Qj,...;t) =0

@ Correct long wavelength limit;
20l Feynma

11111

Cov:/IenyOOds

00 05 10 15 20 25 30
k (AY
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Brillouin-Wigner-CBF (Jackson 1962)

Also known as “uniform limit approximation”

Just keep diagonal term:
(91, 92| FT(6H — hw)F |da, da) ~ S(01)S(d2) [(as) + £(d2) — w] 0g,,050a2.as
Then

[(q| FToHF |q1,qz>\

1
Ezq: (o) + 2(02) —

RPA:  duz (i, Qj,...;t) =0

@ Correct long wavelength limit;
20l Feynma

@ No multi-phonon processes; criil

11111

COV\;/|ey*W00dS
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Brillouin-Wigner-CBF (Jackson 1962)

Also known as “uniform limit approximation”

Just keep diagonal term:
(91, 92| FT(6H — hw)F |da, da) ~ S(01)S(d2) [(as) + £(d2) — w] 0g,,050a2.as
Then

[(q| FToHF |q1,qz>\

1
Ezq: (o) + 2(02) —

RPA:  duz (i, Qj,...;t) =0

@ Correct long wavelength limit;
20l Feynma

@ No multi-phonon processes; criil

@ Infinite lifetime.
C(J‘V\;/|29y*W00dS

00 05 10 15 20 25 30
k (AY
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Brillouin-Wigner-CBF (Jackson 1962)

Also known as “uniform limit approximation”
Just keep diagonal term:

(A1, 02| FT(6H — hw)F |gs,q4) ~ S(d1)S(02) [e(d1) + £(d2) — hw] 8g,.q2042.qs
Then

1« [(a| FT6HF Iql,qz>\
-5 Z

o (1) +(92) -

RPA:  dup. (di,qj,...;t) =0

@ Correct long wavelength limit; *

) 20l Feynma 2u(k,)
@ No multi-phonon processes; it
L5 . '

@ Infinite lifetime. £ o
Beyond RPA: duz(qi, gj;t) # O 5 cowleyoods

@ Includes “Phonon'sp“tt'ng’,! %_o 0.5 1.0 . %Aél) 2.0 25 3.0
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Brillouin-Wigner-CBF (Jackson 1962)

Also known as “uniform limit approximation”
Just keep diagonal term:

(A1, 02| FT(6H — hw)F |gs,q4) ~ S(d1)S(02) [e(d1) + £(d2) — hw] 8g,.q2042.qs
Then

1« [(a| FT6HF Iql,qz>\
-5 Z

Sooeln) +e(az) -

RPA:  dup. (di,qj,...;t) =0

@ Correct long wavelength limit; *

) 20l Feynma 2u(k,)
@ No multi-phonon processes; ) ATEE
<15 .

@ Infinite lifetime. £ \
Beyond RPA: duz(qi, gj;t) # O 5 cowleyoods

@ Includes “Phonon'sp“tt'ng’,! %_o 0.5 1.0 . %Aél) 2.0 25 3.0

@ “renormalized” BW-CBF gets roton
below 10K.
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Large momentum limits
Because people ask for it...

The easy ones: mg and m; sum rules are satisfied independently of the
choice of the self-energy (H. W. Jackson, PRA 9, 964 (1974).

~ —om [ 4 @0,

= —om [~ S0 @0 = s(a)
= —om [ e q,)

= —om [~ G090 = t(a)

The important point: These sum rules provide a unique definition of a local
Vp—-n(q) from the ground state S(q).

Boson Dynamics Sum rules and limits



Sum rules and limits

The m3z sum rule... A mess, but the only useful one

@ Feenberg 1969,
K. N. Pathak and P. Vashishta, Phys. Rev. B 7, 3649 (1973).

m(@ = -om [ ek

— 2t(k) [tz(k) + 4t(k)% + 2t(k)\7(k)}

R\ ? ddq )
" (m> /W(k'q) v(a)(S(lk —al) — S(a)) ,
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Sum rules and limits

The m3z sum rule... A mess, but the only useful one

@ Feenberg 1969,
K. N. Pathak and P. Vashishta, Phys. Rev. B 7, 3649 (1973).

m(@ = -om [ ek

— 2t(k) [tz(k) + 4t(k)% + 2t(k)\7(k)}

R\ ? ddq )
" <m> /W(k'q) v(a)(S(lk —al) — S(a)) ,

@ In BW perturbation theory/“uniform limit”
leading terms for g — oo exact;
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Sum rules and limits

The m3z sum rule... A mess, but the only useful one

@ Feenberg 1969,
K. N. Pathak and P. Vashishta, Phys. Rev. B 7, 3649 (1973).

m(@ = -om [ ek

— 2t(k) [tz(k) + 4t(k)% + 2t(k)\7(k)}

R\ [ de .
’ () /ﬁ(k'q) v(a)(S(lk —al) = S(a))

m

@ In BW perturbation theory/“uniform limit”
leading terms for g — oo exact;

@ Using full time-dependent pair correlations:
probably exact (Calculation pretty messy...).
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Sum rules and limits
High-momentum limit

What we are after:
@ Zero-energy-large-momentum limit:

. 4T
Jm 2(k.0)=-3§
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Sum rules and limits
High-momentum limit

What we are after:
@ Zero-energy-large-momentum limit:

. 4T
Jm 2(k.0)=-3§

@ On-shell, high momentum limit. Exact: “impulse approximation” (H. A.
Gersch, L. J. Rodriguez and P.N. Smith, Phys. Rev. A5, 1547 (1972).

Ne
q) — hw +iN(q)

X(q,w)—>t( AQg)—0 as gq—

as q — oo, hw = t(k) nc: Condensate fraction

Boson Dynamics Sum rules and limits



Large momentum transfer limit

BW for the sake of discussion:

[(a 8H (g1, -, Gn)

Fu(@w) =~ zn: % qzq S(d1)---S(@n)(e(a1) + - - &n — hw)
For large q:
(aldH[d1,...,dn) = 0 -h(Az,...,dn)dqq, + CYCl.
Therefore:

1 a-h(@z. .. a0l
Yu(g,w) = ; (n—1)! qlgqn (t(g —g1) — hw)S(qz2) ... S(gn)

Full theory messier, correct to order w2 but basically the same.
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Sum rules and limits

Kinetic energy limit:

R N la-h(gz,-...qn)
R0 =2 5o 2 S(a). S(an(ia) - (o =0)

----- An

@ Zero-energy-large-momentum limit given by kinetic energy:

. 4T
Jm 20 =35

@ Satisfied by BW in “uniform limit approximation”

VoD = VITol) -~ T~1+3(g(r)~1)

@ Satisfied exactly for correlation functions with full pair fluctuations

@ Suggestive: Go to triplet fluctuations for triplet correlations...

Boson Dynamics Sum rules and limits



Sum rules and limits
On-shell, high momentum limit

_ 1 5 —d1—...dn)|q - h(az,...,qn)]
ru(a.0) = Z (n—1)! qzq S(g2)...S(an)(t(a) — hw + 2Zq - q1)

Recall general limit:

x(K,w) = ve/(H(a) —hw+iAQ))  A@) =0 as g—oo

@ In RPA/Feynman/Bogoljubov: 1, = 1
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Sum rules and limits
On-shell, high momentum limit

_ 1 5 —d1—...dn)|q - h(az,...,qn)]
ru(a.0) = Z (n—1)! qzq S(g2)...S(an)(t(a) — hw + 2Zq - q1)

Recall general limit:

x(K,w) = ve/(H(a) —hw+iAQ))  A@) =0 as g—oo

@ In RPA/Feynman/Bogoljubov: 1, = 1

@ In 2" order BW: 1, =“uniform limit approximation” to n.
(H. W. Jackson, Phys. Rev. 185, 186 (1969).)
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Sum rules and limits
On-shell, high momentum limit

1 5(q—q1—...qn)|q-h(qz,....qn)
; 3 (@-q an) 19 - (g2 Qn)|

(a0 =~ Z (n—1)' . S(d2)...S(an)(t(q) — I + g - 1)

Recall general limit:

x(K,w) = ve/(H(a) —hw+iAQ))  A@) =0 as g—oo

@ In RPA/Feynman/Bogoljubov: 1, = 1

@ In 2" order BW: 1, =“uniform limit approximation” to n.
(H. W. Jackson, Phys. Rev. 185, 186 (1969).)

@ Full time-dependent pair correlations:
Coefficient v similar but analytically different from Ristig-Clark-Fantoni
analysis (See poster by M. Saarela).
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Sum rules and limits
On-shell, high momentum limit

1 5(q—q1—...qn)|q-h(qz,....qn)
; 3 (@-q an) 19 - (g2 Qn)|

(a0 =~ Z (n—1)' . S(d2)...S(an)(t(q) — I + g - 1)

Recall general limit:

x(K,w) = ve/(H(a) —hw+iAQ))  A@) =0 as g—oo

@ In RPA/Feynman/Bogoljubov: 1, = 1

@ In 2" order BW: 1, =“uniform limit approximation” to n.
(H. W. Jackson, Phys. Rev. 185, 186 (1969).)

@ Full time-dependent pair correlations:
Coefficient v similar but analytically different from Ristig-Clark-Fantoni
analysis (See poster by M. Saarela).

@ Corrections from triplet and likely higher fluctuations.

Boson Dynamics Sum rules and limits
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