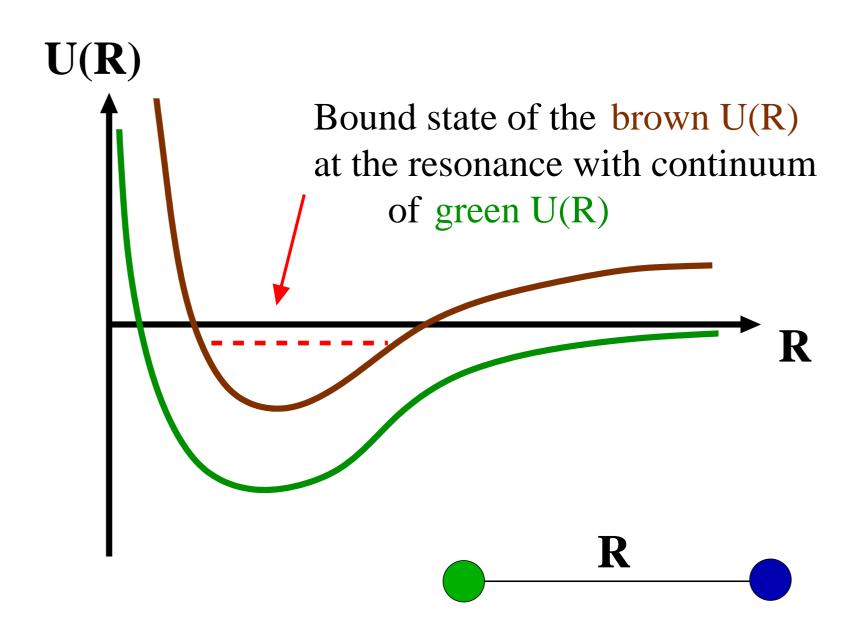

Novel phases in strongly interacting Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France **Outline**

- Introduction. Molecules in Fermi gases
- Molecules in Ferm mixtures. Trimer states
- Crystalline phase and quantum transitions
- Stability and realization of the crystalline phase
- What is next?

Collaborations: D.S. Petrov, D.J. Papoular, C. Salomon (ENS), G.Astrakharchik (Barcelona)

Two-component trapped Fermi gas

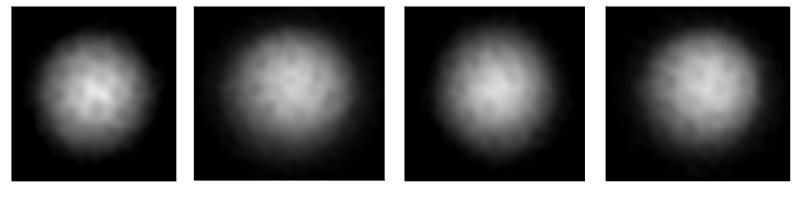

$$E_F = \frac{\hbar^2 k_F^2}{2m}; \quad k_F = (3\pi^2 n)^{1/3}; \quad E_F \sim N^{1/3} \hbar \omega$$

Weakly interacting gas $n|a|^3 \ll 1$; $k_F|a| \ll 1$ $a < 0 \rightarrow$ Interspecies attraction \rightarrow Cooper pairing at low T $\vec{k} \circ \vec{k} \circ \vec{k}$ Superfluid BCS transition $\rightarrow T_c \sim E_F \exp\{-\pi/2k_F|a|\}$ $T_c \ll 0.1E_F$ for ordinary a Very hard to reach

Two-component Fermi gases. Experiments ⁴⁰K ⁶Li

Dilute limit $nR_e^3 \ll 1$ Ultracold limit $\Lambda_T \gg R_e$ Quantum degeneracy \rightarrow JILA 1998 40 K At present $n \sim 10^{13} - 10^{14} \text{cm}^{-3}$; $T \sim 1 \mu \text{K}$ Superfluid behavior through vortex formation \rightarrow MIT BEC of bosonic molecules \rightarrow JILA, Innsbruck, ENS, MIT, Rice Wide resonance *a<0* BCS $\varepsilon_0 = \frac{\hbar^2}{ma^2}$ S.I.R Bo B weakly bound **Molecules** *a>0* BEC $a \gg \mathbf{R}$

Feshbach resonance

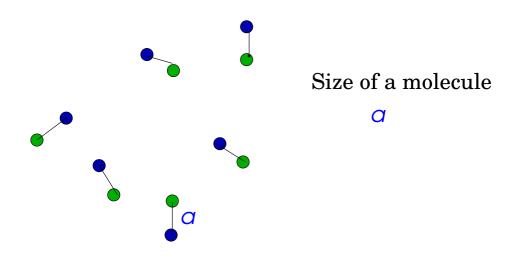

Strongly interacting regime

T = 0 $k_F|a| \gg 1$ \rightarrow Only one distance scale $n^{-1/3}$ Only one energy scale $E_F \sim \hbar^2 n^{2/3}/m$ Universal thermodynamis (J. Ho) Monte Carlo studies $\rightarrow \mu \approx 0.4E_F$ (Carlson et al, Giorgini/Astracharchik, etc.) $T_c = 0.15E_F$ UMASS-ETH

Theory \rightarrow Nature of superfluid pairing, Transition temperature, Excitations

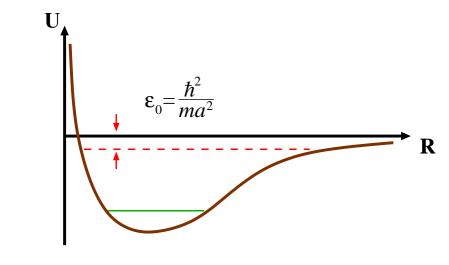
Experiments (JILA, MIT, Innsbruck, Duke, ENS) Vortices (MIT) Vortex lattices

MIT, Zwierlein et al., Science 05



B _f = 835 G	B _f = 843 G	B _f = 854 G	B _f = 864 G
1 / k _F a = 0	1 / k _F a = -0.13	1 / k _F a = -0.27	1 / k _F a = -0.39

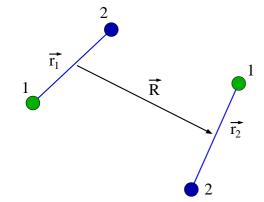
Direct proof of superfluidity !


Gas of bosonic molecules (dimers)

Region III $(a > 0) \Rightarrow$ gas of weakly bound bosonic molecules

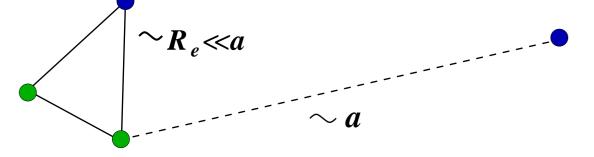
 $na^3 \ll 1 \Rightarrow$ weakly interacting Bose gas

Weakly bound dimers \rightarrow The highest rovibrational state \Rightarrow Collisional relaxation



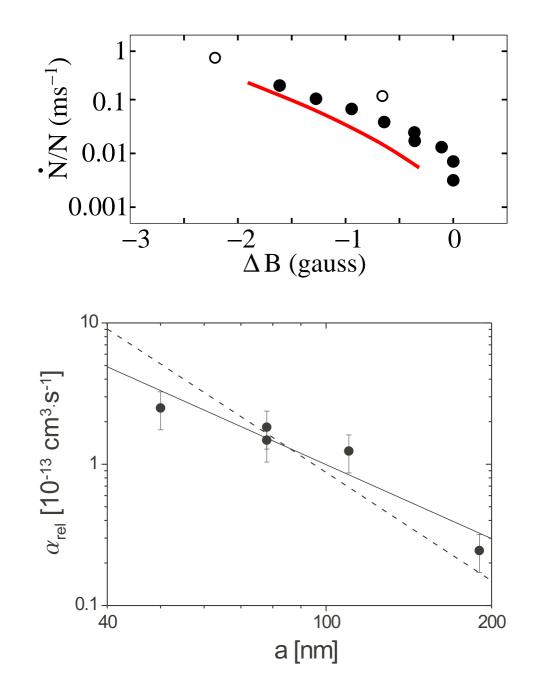
$$(au \sim 1 \mathrm{ms} \mathrm{~for} \mathrm{~Rb}_2 \mathrm{~at} n \sim 10^{13} \mathrm{cm}^{-3})$$

Weakly interacting gas of bosonic dimers


Elastic interaction BEC stability

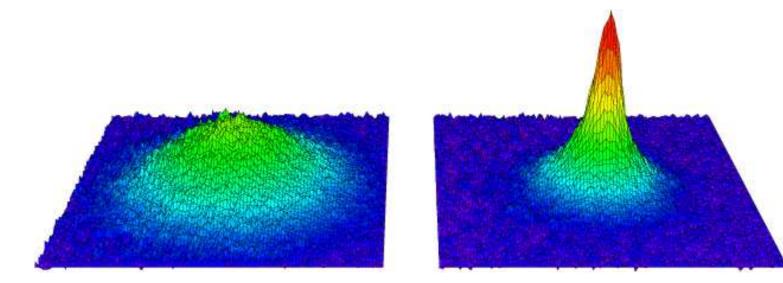
4-body problem Exact solution for $a \gg R_e$ (Petrov et al 2003)

$$a_{dd} = 0.6a$$

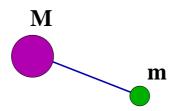


 $\alpha_{rel} \sim (k_{eff}R_e)^{2?} \sim (R_e/a)^{2?} \Rightarrow C(\hbar R_e/m)(R_e/a)^s; \quad s = 2.55$

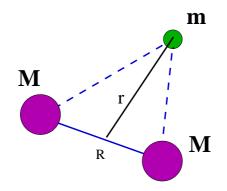
 $\tau \sim (\alpha_{rel} n)^{-1} \sim \text{seconds}$ (Petrov et al 2003)


Suppressed collisional relaxation

Bose-Einstein condensates of molecules

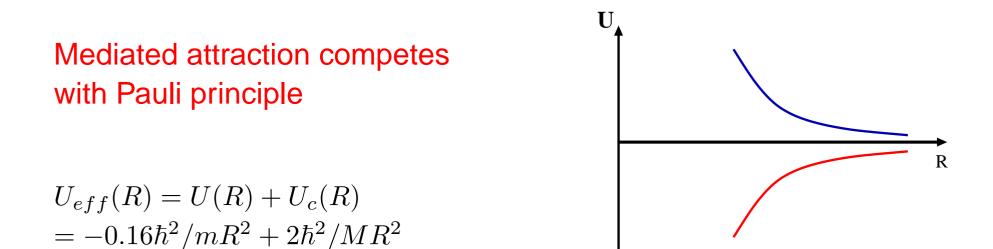

Suppressed relaxation Fast elastic collisions $a_{dd} = 0.6a$

$${}^{6}\mathrm{Li}_{2} \to \frac{\alpha_{rel}}{\alpha_{el}} \le 10^{-4}$$



Molecules in Fermi mixtures

Heavy and light fermions ${}^{6}\text{Li}^{40}\text{K}$ ${}^{6}\text{Li}^{87}\text{Sr}$ $a > 0 \Rightarrow$ weakly bound molecules


Relaxation into deep bound states. What else ? \rightarrow Trimer states ? $M \gg m \rightarrow Born-Oppenheimer picture$

 $r \ll a \rightarrow$ One bound state of a light atom with two fixed heavy ones Mediated attractive potential $U(R) \approx -0.16\hbar^2/mR^2$

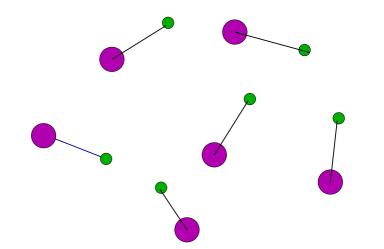
Trimer states

Pauli principle \Rightarrow Centrifugal potential $U_c = 2\hbar^2/MR^2$

 $M/m > 13.6 \rightarrow$ fall into center short-range physics Many nodes of the wavefunction Many (trimer) bound states

Long-range intermolecular repulsion

Molecules of heavy and light fermions Born-Oppenheimer picture


$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

$$U(R) = 2\left(\frac{\hbar^2}{maR}\right) \exp(-2R/a)$$

 $M >>> m \rightarrow$ Collisional stability independent of a

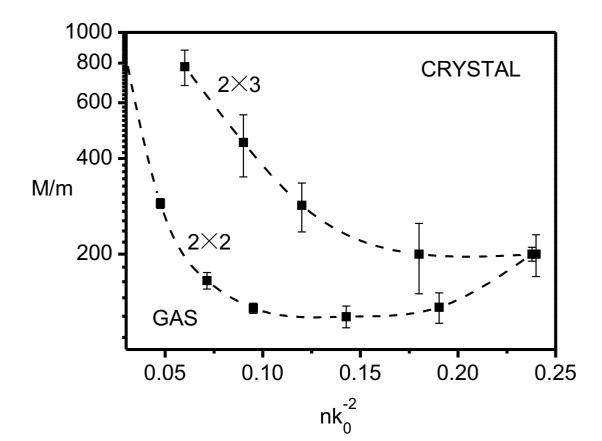
Many-body system of molecules

No interaction between light fermions

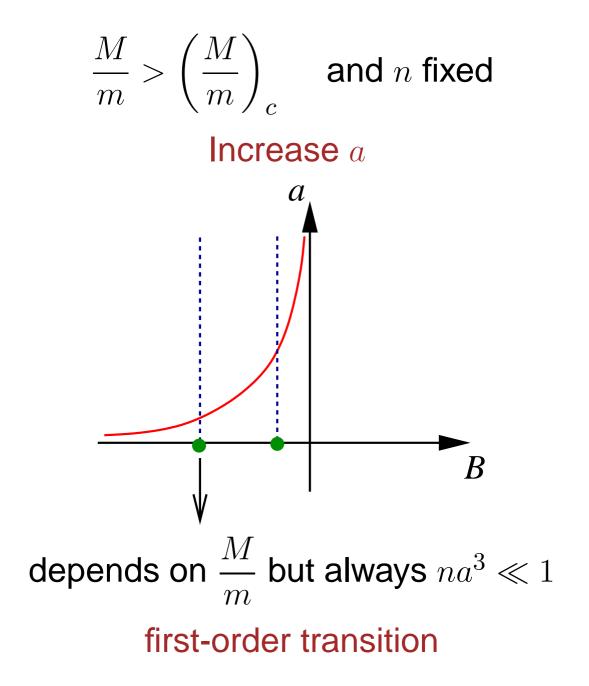
Born-Oppenheimer approach N lowest single-particle states for a light atom Zero-range approximation for light-heavy interaction. Large inter-heavy distances \Rightarrow Narrow band of N light-atom states, by $\sim \epsilon_0$ below the continuum

Total energy
$$E = -N\epsilon_0 + (1/2)\sum_{i,j} U(R_{ij})$$

 $\epsilon_0 = \hbar^2 \kappa_0^2 / 2m \Rightarrow$ molecular binding energy, $\kappa_0^{-1} \rightarrow$ molecular size


 $U_{3D}(R) = 4\epsilon_0 [1 - 2(\kappa_0 R)^{-1})] \exp(-2\kappa_0 R); \quad (1/\kappa_0 R) \exp(-\kappa_0 R) \ll 1$ $U_{2D}(R) = 4\epsilon_0 [\kappa_0 R K_0(\kappa_0 R) K_1(\kappa_0 R) - K_0^2(\kappa_0 R)]; \quad K_0(\kappa_0 R) \ll 1$ $R \approx 2/\kappa_0 \text{ or larger}$

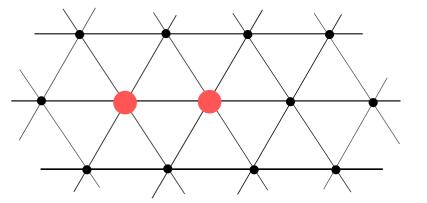
Phase diagram


2D motion of heavy atoms

 $H = -(\hbar^2/2M) \sum_i \Delta_{R_i} + (1/2) \sum_{i,j} U(R_{i,j})$ $(M/m) > (M/m)_c \rightarrow \text{ crystalline phase}$

2D motion of light atoms $\Rightarrow (M/m)_c = 120$ triangular lattice 3D motion of light atoms $\Rightarrow (M/m)_c = 200$ triangular lattice

Quantum transitions


Realization of the crystalline phase

 $\frac{M}{m} \approx 200$ or $\frac{M}{m} \approx 200 \rightarrow$ no gas phase possible How to obtain the crystalline phase? **Optical lattice for heavy fermions** Small filling factor \Rightarrow Increase of M/mIncrease of *M* by a factor of 20 or more is possible

Formation of a superlattice

Stability of the crystalline phase

Relaxation into deep bound states

heavy atoms \Rightarrow neighboring sites \Rightarrow jump to one and the same site \Rightarrow undergo relaxation process τ exceeds 10s even for $n \sim 10^9 \text{cm}^{-2}$

Formation of trimer states (2 heavy and 1 light atom) Heavy atoms are localized in different lattice sites

4-body problem in a lattice $\Rightarrow \tau$ can be $\lesssim 1$ s for $n \sim 10^9$ cm⁻² The rate can be suppressed by increasing M_*/m

Realistic?

- 6 Li- 40 K mixture with a lattice for K
- Lattice period 250 nm and K effective mass $M_* = 20M$ \Rightarrow tunneling rate $\sim 10^3$ s
- $\bullet \ a = 500 \text{ nm} \Rightarrow \epsilon_0 = 300 \text{ nK} \ \Rightarrow T \ll \epsilon_0$
- **• 2D** densities in the range $10^7 10^8$ cm⁻²

Conclusions

- Remarkable physics of weakly bound molecules in cold Fermi gases
- Novel physics of molecular collisional stability in mixtures of Fermi gases
- Possibilities to create new macroscopic quantum systems