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Outline

Alpha particle condensation in dense matter

Few-body bound states in nuclear medium

Pairing in nuclear systems

Weak interactions and neutrino rates
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Alpha condensation

Phenomenology of alpha condensation:

The excited states of 4N nuclei are well described
within the α particle model: elementary degrees of
freedom are α’s interacting via a α-α potential: 8Be
(unstable) 12C (first stable α nucleus), 16O, 40Ca.

Recent work suggest that these systems are well
described by single wave function (BEC in systems
with a few particles ?).
This motivates the study of Bose-Einstein
condensation in infinite alpha matter - start with
N →∞ system and follow the crossover as N is
reduced.
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The phase diagram of supernova matter

Densities ρ ∼ 1012 g cm−3; Temperatures T ≤ 10 MeV;
content→ 15− 20% α particles

Quantum degeneracy (BEC)
Opacities
Neutrino sphere and signal
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From Hamiltonian to effective action

The non-relativistic theory of bosons can be mapped
onto relativistic O(n) model when T → T+

c

H =

∫
d3x

[
~2

2m
∇ψ†(x)∇ψ(x)− µψ†(x)ψ(x)

+ψ†(x)ψ(x)U(x)

]
,

U(x) =

∫
dx′V2(x′,x)ψ†(x′)ψ(x′)

+

∫
dx′
∫
dx′′V3(x,x′,x′′)ψ†(x′′)ψ(x′)ψ†(x′′)ψ(x′),
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Expand the fields ψ and ψ in Matsubara sums and keep
near Tc the zeroth order term (Baym, Blaizot,
Zinn-Justin, 1999, Zinn-Justin 1989).

Introduce new real fields: ψ± = η(φ1 ± iφ2).

The resulting continuum action describes a classical
O(2) symmetric scalar φ6 field theory in 3d:

S (φ) =

∫
d3x

{
1

2

∑

ν

[∂νφ(x)]2 +
r

2
φ(x)2

u

4!

[
φ(x)2

]2 w
6!

[
φ(x)2

]3
}
.

Negative quartic, and positive sextic terms!
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Partition function

Compute the partition function on 3d spatial lattice

Z =

∫
[dφ(x)]exp [−S (φ)]
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Results could be supplemented by an HNC4/HNC5
calculations at T = 0 of condensate fraction.

Potentially rich astrophysical implications of alpha
condensations remain be studied

What about the other light clusters A = 2, 3 ?

The deuteron and triton are less bound (-2.2 MeV) and
(-8.4 MeV) and thus less stable.

Weakly bound states are ideal sources of opacity!
example: H− opacity is dominant in ordinary stars.
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The three-body problem in background medium

Work within the Kadanoff-Baym real-time GF method→
two and three-point functions are defined on the
Schwinger-Keldysh contour

The three-body equation for the T -matrix

T = V + V G V = V + V G0 T ,

where the interaction V = V12 + V23 + V13

Reformulate the problem: T = T (1) + T (2) + T (3)

T (k) = Vij + VijG0T ijk = 123, 231, 312.

Define: Tij = Vij + VijG0Tij and eliminate the potentials
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Non-singular three-body equations (Bethe-Faddeev) with
the time structure of the three-body T -matrix

T R (1)(t, t′) = T R23 (t, t′)

+

∫ [
T R (2)(t, t̄) + T R (3)(t, t̄)

]
GR0 (t̄, t′′)T R23 (t′′, t′)dt̄dt′′,

Many particle-hole channels (new aspect of medium
physics)

GR0 (t1, t2) = θ(t1 − t2)





G>G>G>(t1, t2)− (>↔<) (3p)

G>G>G<(t1, t2)− (>↔<) (2ph)

G>G<G<(t1, , t2)− (>↔<) (p2h)

G<G<G<(t1, t2)− (>↔<) (3h)
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Particle-hole content of the T -matrix

3-particle – 3-hole scattering T -matrix

T R (1) = T R23 +

∫ [
T R (2) + T R (3)

] Q3(Ω′)
Ω− Ω′ + iη

T R23(Ω′)dΩ′,

3-body Pauli-blocking: f̄F = 1− fF

Q3(pα, pβ , pγ) = f̄F (pα)f̄F (pβ)f̄F (pγ)− fF (pα)fF (pβ)fF (pγ).

pα are spanned in terms of Jacobi coordinates.
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Bound states in background medium

Bound state wave-function

Ψ = ψ(1) + ψ(2) + ψ(3); ψ(k) = G0Tij(ψ
(i) + ψ(j)). (-8)

Need the channel T -matrix

TR(~p, ~p′; ~P ,E)

= V (~p, ~p′) +

∫
d~p′′

(2π)3
V (~p, ~p′′)GR0 (~p′′, ~P ,E)TR(~p′′, ~p′; ~P ,E)

GR0 (~k1, ~k2, E) =
Q2(~k1, ~k2)

E − ε(~k1)− ε(~k2) + iη
, (-10)

Poles→ A = 2 binding energies EB(T, ρ).
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Background dependent binding energies of triton in nuclear matter
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Squeezing the wave function in the momentum space: signal of a
quantum phase transition to the unbound state.
What happens beyond the extinction point?

The deuteron crosses over to become a Cooper pair

Precritical three-body correlations for T > Tc ?
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Nozieres-Schmitt-Rink solutions

The evolution deuteron→ Cooper pair is well described by
the mean-field BCS theory (coupled 3S1 −3 D1 channels)

∆(i)(p,Λ) =

∫ Λ dp′p′2

(2π)3
V 3SD1(p, p′)

× ∆(i−1)(p′,Λ)√
E2
p +D(i−1)(p′,Λ)2

[f(ω+)− f(ω−)]. (-11)

n = 4

∫
d3p

(2π)3

[
u2
pf(ω+) + v2

pf(ω−)
]
. (-11)

Solved iteratively with a running cut-off Λ; the iteration is

stopped when d∆/dΛ = 0.
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BCS-BEC crossover

Nozières-Schmitt-Rink conjecture: the BCS theory
smoothly interpolates between the weak and strong
couplings

In the BEC limit the pair-wave function goes over to the
Schrödinger equation

ψ(k) = 〈a†
n,~k
a†
p,−~k〉 =

∆(k)

2Ek

[
1− f(E+

k )− f(E−k )
]
,

k2

m
ψ(k) +

[
1− f(E+

k )− f(E−k )
]∑

k′

V (k, k′)ψl′(k
′) = 2µψ(k)

In unbalanced systems phases with broken space
symmetries intervene.
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BCS-BEC crossover
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At the cross-over µ sign changes, coherence length ξ ∼ n1/3.
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BCS-BEC crossover in asymmetric systems
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Crossover continued

Lombardo et al PRC
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Nuclear systems
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Left panel. Dependence of the experimental scattering phase shifts in the 3S1, 3P2,
3D2, and 3D1 partial waves on the laboratory energy. Right panel. The dependence of
the critical temperatures of superfluid phase transitions in the attractive channels on
the chemical potential.
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Pairing in neutron matter with retardation - strong
coupling Eliashberg theory

time-non-local interactions - gaps are then energy
dependent
keep same approximations for normal and
anomalous self-energies (Ward identities)
possible in medium modifications of the meson
dynamics (e.g. precursor of pion condensation).

Long + short range components:

HπNN = − fπ
mπ

(σ ·∇)(τ · φ)

+
[
g′σ1 · σ2 + h′σ1 · σ2 S12(n)

]
τ1 · τ2,
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DSE in nucleonic sector

Normal propagators:

GR(p) =
ωZ(p) + ξ∗p

(ω + iη)2Z(p)2 − ξ∗2p −∆R(p)2
,

Anomalous propagators:

FR(p) = − ∆R(p)

(ω + iη)2Z(p)2 − ξ∗2p −∆R(p)2
,

Normal self-energies: ΣR = ΣR
S + ΣR

A

ξ∗(p) = ξ(p) + ΣR
S (p)

Wave-function renormalization: Z(p) = 1− ω−1ΣR
A(ω).
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DSE in bosonic sector

DSE for mesons: D̂(p) = D̂0(p) + D̂0(p)Π̂(p)D̂(p).

Polarization tensor and the vertex:

Π̂(q) = −Tr

∫
d4p

(2π)4
i Γ̂0(q)Ĝ(p+ q)Ĝ(−p)Γ̂(q),

Γ̂(q) = Γ̂0(q) + Tr

∫
d4p

(2π)4
i Γ̂1(q)Ĝ(p+ q)Ĝ(−p)Γ̂(q).

Pion spectral function:

B(q) =
−2ImΠR(q)

[ω2 − ~q2 −m2
π − ReΠR(q)]2 + [ImΠR(q)]2

.
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Pion spectral function
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Retarded (Fock) part of the self-energies

ΣR(ω, ~p) = Tr

∫
d3qdε

(2π)4
Γ0(~q)AG(ε, ~p− ~q)C(ω, ε, ~q)Γ(~q),

∆R(ω, ~p) = Tr

∫
d3qdε

(2π)4
Γ0(~q)AF (ε, ~p− ~q)C(ω, ε, ~q)Γ(~q),

C =

∫ ∞

0

dω′

2π
B(ω′, ~q)

[
f(ε) + g(ω′)

ε− ω′ − ω − iη +
1− f(ε) + g(ω′)
ε+ ω′ − ω − iη

]
.

Need to solve self-consistently 4 integral equations (= 2
complex equation for the normal and anomalous
self-energies).

The kernels of these integral equations are singular
either at the boundary or within the integration range.

Iterative procedure; good convergence after 15-20
iterations.
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Off-shell characteristics: gap and wave-function renormalization
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Different approximations to the spectral function
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Effects of pairing on neutrino radiation from NS

Processes on fermions

Neutral current processes (Z0 exchange)
{
f1 → f2 + νf + ν̄f (brems)

f1 + f ′1 → f2 + f ′2 + νf + ν̄f
(-21)

Charged current processes (W± exchange)
{
f1 → f2 + e+ ν̄e (Urca)

f1 + f ′1 → f2 + f ′2 + e+ ν̄e
(-22)
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Transport equations

ν and ν̄ - Boltzmann equations with KB collision integrals

[
∂t + ~∂q ων(~q)~∂x

]
fν(~q, x)

=

∫ ∞

0

dq0

2π
Tr
[
Ω<(q, x)S>0 (q, x)− Ω>(q, x)S<0 (q, x)

]
,

ν-quasiparticle propagators:

S<0 (q, x) =
iπ 6q
ων(~q)

[
δ (q0 − ων(~q)) fν(q, x)

−δ (q0 + ων(~q)) (1− fν̄(−q, x))
]
.

definition of the Poisson bracket

{f, g}P.B. = ∂ωf ∂tg − ∂tf ∂ωg − ∂~pf ∂~rg + ∂~rf ∂~pg.
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Self-energies

ν and ν̄-self-energies (second order in weak force)

−iΩ>,<(q1, x) =

∫
d4q

(2π)4

d4q2

(2π)4
(2π)4δ4(q1 − q2 − q)

iΓµL q iS
<
0 (q2, x)iΓ†λL qiΠ

>,<
µλ (q, x), (-26)

the central problem is to compute the polarization tensor!
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Bremsstrahlung emissivity

energy loss per unit time and volume

ενν̄ =
d

dt

∫
d3q

(2π)3
[fν(~q) + fν̄(~q)]ων(~q) (-27)

expressed through the collision integrals

ενν̄ = −2

(
G

2
√

2

)2∑

f

∫
d3q2

(2π)32ων(~q2)

∫
d3q1

(2π)32ων(~q1)

∫
d4q

(2π)4

(2π)4δ3(~q1 + ~q2 − ~q)δ(ων(~q1) + ων(~q2)− q0) [ων(~q1) + ων(~q2)]

gB(q0) [1− fν(ων(~q1))] [1− fν̄(ων(~q2))] Λµλ(q1, q2)=m ΠR
µλ(q).
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Neutral current pair-breaking processes

The one-loop contribution to the polarization tensor in the
superfluid matter

ενν̄ =
G2 c2V
240π3

ν(pF ) T 7 I(ζ) ≡ ε0 I(ζ),

I(ζ) = ζ7

∫ ∞

0
dφ (coshφ)5 f(ζ coshφ)2, ζ = 2∆(T )/T
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Need to go beyond the one loop - RPA

The vertex functions in the superfluid phase

Contributions to the polarization tensor
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