Proton correlations as a function of nucleon asymmetry

Green's function method/framework

^{Bob} Charity, Jon Mueller, Lee Sobotka Washington University in St. Louis Dimitri Van Neck University of Ghent

- Illustrations: atoms, liquid ³He & nuclei
- Correlations for stable closed-shell nuclei
- Exciting physics for N >> Z or Z >> N nuclei?
 - Critical quantity $\delta = (N-Z)/A \Rightarrow asymmetry$
 - What to look for? Motivation
 - Solid framework for extrapolation
 - Some recent results and developments
 - Outlook

Green's function ingredients

Single-particle propagator (Green's function):

$$G(\alpha,\beta;E) = \sum_{m} \frac{\left\langle \Psi_{0}^{A} \left| a_{\alpha} \right| \Psi_{m}^{A+1} \right\rangle \left\langle \Psi_{m}^{A+1} \left| a_{\beta}^{\dagger} \right| \Psi_{0}^{A} \right\rangle}{E - \left(E_{m}^{A+1} - E_{0}^{A} \right) + i\eta} \qquad \Leftarrow \text{Particle part}$$

$$+ \sum_{n} \frac{\left\langle \Psi_{0}^{A} \left| a_{\beta}^{\dagger} \right| \Psi_{n}^{A-1} \right\rangle \left\langle \Psi_{n}^{A-1} \left| a_{\alpha} \right| \Psi_{0}^{A} \right\rangle}{E - \left(E_{0}^{A} - E_{n}^{A-1} \right) - i\eta} \qquad \Leftarrow \text{Hole part}$$

Spectral functions: $S_{h}(\alpha; E) = \sum_{n} \left| \left\langle \Psi_{n}^{A-1} \left| a_{\alpha} \right| \Psi_{0}^{A} \right\rangle \right|^{2} \delta \left(E - \left(E_{0}^{A} - E_{n}^{A-1} \right) \right)$ Spectroscopic factor: $S_{\ell j}^{n} = \int dr r^{2} \left| \left\langle \Psi_{n}^{A-1} \left| a_{r \ell j} \right| \Psi_{0}^{A} \right\rangle \right|^{2}$ Occupation numbers: $n(\alpha) = \int_{-\infty}^{\varepsilon_{F}} S_{h}(\alpha; E) dE = \left\langle \Psi_{0}^{A} \left| a_{\alpha}^{\dagger} a_{\alpha} \right| \Psi_{0}^{A} \right\rangle$ Below $\varepsilon_{F}^{-} = E_{0}^{A} - E_{0}^{A-1} \implies S_{h}(\alpha; E) = \frac{1}{\pi} \operatorname{Im} G(\alpha, \alpha; E)$

Density matrix; natural orbits; Galitskii-Migdal energy sum rule ...

Theory & Framework

Answers for example: What do nucleons do in the nucleus and how does their behavior change as a function of asymmetry

Atoms

Nucleon propagator and dripline physics 4

Closed-shell atoms: $n(\alpha) = 0$ or 1

Nuclei (e,e'p) reaction NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Wave functions as expected, except Nu

1.0 Mean Field Theory Removal probability for valence protons ⁴⁸Ca ₉₀Zr ¹⁶O ₃₁P 0.8 from NIKHEF data L. Lapikás, Nucl. Phys. A553,297c (1993) 0.6 S/(2j+1) ⁷Li ⁴⁰Ca ²⁰⁸Pb $S \approx 0.65$ for valence protons ¹²C 0.4 Reduction \Rightarrow both SRC and LRC 0.2 Note: We have seen mostly VALENCE PROTONS data for removal of 0.0 10² 10¹ valence protons target mass

Nucleon propagator and dripline physics 6

Two effects associated with short-range correlations

- Depletion of the Fermi sea
- Admixture of high-momentum components

Recent data confirm both aspects (predicted by nuclear matter results)

M. van Batenburg & L. Lapikás from ²⁰⁸Pb (e,e´p) ²⁰⁷Tl NIKHEF in preparation

Occupation of deeply-bound proton levels from **EXPERIMENT**

Confirms predictions for depletion

 $n(0) \Rightarrow 0.85 \text{ Reid}$ 0.87 Argonne V18 0.89 CDBonn Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the whole mean-field domain for the FIRST time!!

SRC

Correlations for nuclei with N very different from Z? \Rightarrow Radioactive beam facilities

Nuclei are TWO-component Fermi liquids

- SRC about the same between pp, np, and nn
- Tensor force disappears for n when N >> Z but ...
- Any surprises?
- Ideally: quantitative predictions based on solid foundation

Some pointers: both from theory and experiment

Nucleon propagator and dripline physics 11

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Program at MSU initiated by Gregers Hansen P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. **53**, 219 (2003)

neutrons more correlated with increasing proton number and accompanying increasing separation energy.

Dyson Equation and "experiment"

Equivalent to ...

Schrödinger-like equation with: $E_n^- = E_0^N - E_n^{N-1}$ Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 \Rightarrow as observed in (e,e'p)

$$-\frac{\hbar^{2}\nabla^{2}}{2m}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle+\sum_{m'}\int d\vec{r}'\Sigma'^{*}(\vec{r}m,\vec{r}'m';E_{n})\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}'m'}\right|\Psi_{0}^{N}\right\rangle=E_{n}^{-}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle$$

$$S = \left| \left\langle \Psi_{n}^{N-1} \middle| a_{\alpha_{qh}} \middle| \Psi_{0}^{N} \right\rangle \right|^{2} = \frac{1}{1 - \frac{\partial \Sigma'^{*} \left(\alpha_{qh}, \alpha_{qh}; E\right)}{\partial E}} \right|_{E_{n}^{-}}$$

$$DE \text{ yields} \qquad \left\langle \Psi_{n}^{N-1} \middle| a_{\vec{r}m} \middle| \Psi_{0}^{N} \right\rangle = \psi_{n}^{N-1} (\vec{r}m)$$

$$\left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{k}^{N+1} \right\rangle = \psi_{k}^{N+1} (\vec{r}m)$$

$$\left\langle \Psi_{E}^{c,N-1} \middle| a_{\vec{r}m} \middle| \Psi_{0}^{N} \right\rangle = \chi_{c}^{N-1} (\vec{r}m; E)$$

$$\left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{E}^{c,N+1} \right\rangle = \chi_{c}^{N+1} (\vec{r}m; E)$$

 $lpha_{qh}$ solution of DE at E_n^-

Bound states in N-1 Bound states in N+1 Scattering states in N-1 Elastic scattering in N+1

Elastic scattering wave function for (p,p) or (n,n)

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

"Mahaux analysis" \Rightarrow Dispersive Optical Model (DOM)

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

There is empirical information about the nucleon self-energy!!

- \Rightarrow Optical potential to analyze elastic nucleon scattering data
- \Rightarrow Extend analysis from A+1 to include structure information in A-1 \Rightarrow (e,e'p) data
- \Rightarrow Employ dispersion relation between real and imaginary part of self-energy

Recent extension

Combined analysis of protons in ⁴⁰Ca and ⁴⁸Ca Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. **97**, 162503 (2006)

Large energy window (> 200 MeV)

Goal: Extract asymmetry dependence $\Rightarrow \delta = (N - Z)/A$ \Rightarrow Predict proton properties at large asymmetry $\Rightarrow {}^{60}Ca$ \Rightarrow Predict neutron properties ... the dripline based on data!

Reaction cross section ⁴⁰Ca and ⁴⁸Ca

Loss of flux in the elastic channel

Potentials

Surface potential strengthens with increasing asymmetry for protons

200 سي 20-20 400_ J_w/A J_v/A a) rms radii R_{RMS} [fm] 4.5 4 R^v_{RMS} b) 3.5 50 150 200 100

0

Volume integrals

Nucleon propagator and dripline physics 16

E-E_F [MeV]

Fit and predictions of n & p elastic scattering cross sections

Nucleon propagator and dripline physics 17

Present fit and predictions of polarization data

Nucleon propagator and dripline physics 18

Present fit to (e,e'p) data

Proton single-particle structure and asymmetry

Extrapolation in δ

Naïve: $p/n \Rightarrow \pm (N-Z)/A$

Cannot be extrapolated for n

Less naïve:

$$U = V_0 + \frac{t \cdot T}{A} V_1$$

 $p/n \Rightarrow \Theta(\pm(N-Z)) \int (|N-Z|)/A$

Emphasizes coupling to GT resonance

Need *n*+⁴⁸Ca elastic scattering data!!!

Nucleon propagator and dripline physics 21

Driplines

Proton dripline wrong by 1

Neutron dripline more complicated:

⁶⁰Ca and ⁷⁰Ca particle bound Intermediate isotopes unbound Reef?

Improvements in progress

Replace treatment of nonlocality in terms of local equivalent but energy-dependent potential by explicitly nonlocal potential \Rightarrow Necessary for exact solution of Dyson equation

- Yields complete spectral density as a function of energy
- Yields one-body density
- Yields natural orbits
- Yields charge density
- Yields neutron density
- Data for charge density can be included in fit
- Data for (e,e'p) cross sections near E_F can be included in fit
- High-momentum components can be included (Jlab data)
- E/A can be calculated/ used as constraint \Rightarrow TNI
- NN Tensor force can be included explicitly
- Generate functionals for QP-DFT

OK

OK

OK

OK

OK

Summary

Proton sp properties in stable closed-shell nuclei understood (mostly)

Study of N≠Z nuclei based on DOM framework and experimental data

- Description of huge amounts of data
- Sensible extrapolations to systems with large asymmetry
- More data necessary to improve/pin down extrapolation
- More theory

Predictions

- N≠Z p more correlated while n similar (for N>Z) and vice versa
- Proton closed-shells with N>>Z \Rightarrow may favor pp pairing
- Neutron dripline may be more complicated (reef)

Deep-inelastic neutron scattering off quantum liquids

Response at 19.4 Å⁻¹ Probe: neutrons R.T. Azuah et al., J. Low Temp. Phys. **101**, 951 (1995)

Theory: Monte Carlo n(k) & FSE (ρ_2) beyond IA F. Mazzanti et al., Phys. Rev. Lett. **92**, 085301 (2004)

 $J(Y) = \frac{1}{2\pi^2 \rho} \int_{|Y|}^{\infty} dk \, k \, n(k) \qquad \text{IA result}$

 $Y = \frac{m\omega}{q} - \frac{q}{2}$ scaling variable

Momentum distribution liquid ³He

S. Moroni et al., Phys. Rev. B**55**, 1040 (1997) Comparison of DMC, GFMC, and VMC & HNC

