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• Green‘s function method/framework

• Illustrations: atoms, liquid 3He & nuclei
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Green’s function ingredients

 Spectral functions:
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∫ Spectroscopic factor:
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 Density matrix; natural orbits; Galitskii-Migdal energy sum rule …

 Occupation numbers: 
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Theory & Framework

Calculations: Include SRC and LRC as good as possible

Compare with experiment; add more physics

Determine propagator from data!?!!

(e,2e) & (e,e’p) reaction below the Fermi energy

Elastic scattering data above the Fermi energy

Answers for example:
What do nucleons do in the nucleus
and how does their behavior change 
as a function of asymmetry

{Theory
hard...

{Framework
“easy”
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€ 

ϕ1s(q) = 23/ 2π 1
(1+ q2)2

Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

Helium

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms

S = 1

S = 1

Closed-shell atoms: n(α) = 0 or 1
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Nuclei (e,e’p) reaction
NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Wave functions as expected, except ….
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Removal probability forRemoval probability for
valence protonsvalence protons

fromfrom
NIKHEF dataNIKHEF data

L. L. LapikLapikááss, , NuclNucl. Phys. A553,297c (1993). Phys. A553,297c (1993)

Note:
We have seen mostly
data for removal of

valence protons

S ≈ 0.65 for valence protons
Reduction ⇒ both SRC and LRC
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Two effects associated with short-range correlations

• Depletion of the Fermi sea

• Admixture of high-momentum components

 Recent data confirm both aspects (predicted by nuclear matter results)
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M. van Batenburg & L. Lapikás from 208Pb (e,e´p) 207Tl  
NIKHEF in preparation

Up to 100 MeV missing energy and
270 MeV/c missing momentum

Covers the whole mean-field domain
for the FIRST time!!

Occupation of deeply-bound proton levels from EXPERIMENT

Confirms predictions for depletion

SRC
LRC

n(0) ⇒ 0.85 Reid
0.87 Argonne V18
0.89 CDBonn

Nuclear matter
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Location ofLocation of
single-particlesingle-particle
 strength in strength in

nucleinuclei

SRC

SRC
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Correlations for nuclei with N very different from Z?
⇒ Radioactive beam facilities

• SRC about the same between pp, np, and nn
• Tensor force disappears for n when N >> Z but …

• Any surprises?
• Ideally: quantitative predictions based on solid foundation

Some pointers: both from theory and experiment

Nuclei are TWO-component Fermi liquids
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SCGF for isospin-polarized nuclear matter
including SRC ⇒ momentum distribution

0.16 fm-3

0.32 fm-3
neutrons

protons

asymmetry = (N-Z)/A

Frick et al.
PRC71,014313(2005)

CDBonn
ArV18
Reid

n(k=0)

SRC
can be handled
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A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Z=18
N=14

Z=8
N=14

neutrons more correlated with increasing proton number
and accompanying increasing separation energy.

RS ≠ not spectroscopic factor

Reduction w.r.t. shell model

Program at MSU initiated by Gregers Hansen 
P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)
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Dyson Equation and “experiment”
Equivalent to …
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Self-energy: non-local, energy-dependent potential
With energy dependence: spectroscopic factors < 1
⇒ as observed in (e,e’p) € 
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 Bound states in N-1

 Bound states in N+1
 Scattering states in N-1
 Elastic scattering in N+1

Elastic scattering wave function for (p,p) or (n,n)
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“Mahaux analysis” ⇒ Dispersive Optical Model (DOM)

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

 There is empirical information about the nucleon self-energy!!
⇒ Optical potential to analyze elastic nucleon scattering data
⇒ Extend analysis  from A+1 to include structure information in A-1 ⇒ (e,e’p) data
⇒ Employ dispersion relation between real and imaginary part of self-energy

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

Combined analysis of protons in 40Ca and 48Ca
Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. 97, 162503 (2006)

Goal: Extract asymmetry dependence ⇒ δ = (N - Z)/A
⇒ Predict proton properties at large asymmetry ⇒  60Ca
⇒ Predict neutron properties …  the dripline

based on data!

Large energy window (> 200 MeV)

Recent extension
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Reaction cross section 40Ca and 48Ca

Loss of flux in the elastic channel
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Potentials
Surface potential strengthens
with increasing asymmetry
for protons

Volume integrals

rms radii
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Fit and predictions of n & p elastic scattering cross sections
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Present fit and predictions of polarization data
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Present fit to (e,e’p) data

radii of
bound state 
wave functions

spectroscopic
factors

widths of strength
distribution



Pairing of protons due
to pn correlations?!

Proton single-particle structure and asymmetry

Increased correlations
with increasing asymmetry!
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Extrapolation in δ

Naïve: p/n ⇒ ± (N-Z)/A

Cannot be extrapolated for n
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Less naïve:

p/n ⇒ Θ(±(N-Z))√(|N-Z|)/A

Emphasizes coupling to GT resonance

Need n+48Ca elastic scattering data!!!
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Driplines

Proton dripline wrong by 1

Neutron dripline more complicated:  60Ca and 70Ca particle bound
Intermediate isotopes unbound
Reef?
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Improvements in progress
 Replace treatment of nonlocality in terms of local equivalent
 but energy-dependent potential by explicitly nonlocal potential
 ⇒ Necessary for exact solution of Dyson equation

• Yields complete spectral density as a function of energy  OK
• Yields one-body density OK
• Yields natural orbits OK
• Yields charge density OK
• Yields neutron density OK
• Data for charge density can be included in fit
• Data for (e,e’p) cross sections near EF can be included in fit
• High-momentum components can be included (Jlab data)
• E/A can be calculated/ used as constraint ⇒ TNI
• NN Tensor force can be included explicitly
• Generate functionals for QP-DFT
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Charge density & High-momentum components

Only 2% high-momentum strength
⇒ Modify self-energy to include more
    high-momentum strength
Consistent with theoretical experience
and Jlab data!
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Summary
•• ProtonProton sp properties  sp properties inin stable closed stable closed-shell-shell nuclei understood  nuclei understood ((mostlymostly))

Study of N≠Z nuclei based on DOM framework and experimental data

• Description of huge amounts of data
• Sensible extrapolations to systems with large asymmetry
• More data necessary to improve/pin down extrapolation
• More theory

Predictions

• N≠Z p more correlated while n similar (for N>Z) and vice versa
• Proton closed-shells with N>>Z ⇒ may favor pp pairing
• Neutron dripline may be more complicated (reef)
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Deep-inelastic neutron scattering off quantum liquids

Liquid 3He Response at 19.4 Å-1

Probe: neutrons
R.T. Azuah et al., J. Low Temp. Phys. 101, 951 (1995)

Theory: Monte Carlo n(k) & FSE (ρ2) beyond IA
F. Mazzanti et al., Phys. Rev. Lett. 92, 085301 (2004)
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Momentum distribution liquid 3He

S. Moroni et al., Phys. Rev. B55, 1040 (1997)
Comparison of DMC, GFMC, and VMC & HNC
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protons in Ca

electrons in Ne
Data from (e,2e)

protons in stable
closed-shell nuclei

(e,e’p) DOM

Neutron-proton asymmetry

ZFZF

weak correlations

very strong correlations
Data from (n,n’)asymmetry 

(BE) “knob”


