Proton correlations as a function of nucleon asymmetry

• Green's function method/framework

Bob Charity, Jon Mueller, Lee Sobotka
Washington University in St. Washington University in St. Louis
Dimitri Van Neck
University in St. Louis Dimitri Van Neck
University of Ghent

- Illustrations: atoms, liquid 3He & nuclei
- Correlations for stable closed-shell nuclei
- \cdot Exciting physics for N \rightarrow Z or Z \rightarrow N nuclei?
	- Critical quantity δ =(N-Z)/A \Rightarrow asymmetry
	- What to look for? Motivation
	- Solid framework for extrapolation
	- Some recent results and developments
	- Outlook

Green's function ingredients

Single-particle propagator (Green's function):

$$
G(\alpha, \beta; E) = \sum_{m} \frac{\langle \Psi_0^A | a_{\alpha} | \Psi_m^{A+1} \rangle \langle \Psi_m^{A+1} | a_{\beta}^{\dagger} | \Psi_0^A \rangle}{E - (E_m^{A+1} - E_0^A) + i\eta} + \sum_{n} \frac{\langle \Psi_0^A | a_{\beta}^{\dagger} | \Psi_n^{A-1} \rangle \langle \Psi_n^{A-1} | a_{\alpha} | \Psi_0^A \rangle}{E - (E_0^A - E_n^{A-1}) - i\eta} \Leftarrow \text{Hole part}
$$

 S pectral functions: $S_h(\alpha;E) = \sum_{n=1}^{\infty} |\Psi_n^{A-1}| a_{\alpha} |\Psi_0^{A-1}|$ $numbers:$ $n(\alpha) = \int S_h(\alpha;E)$ $A \setminus \vert^2$ $\sum_{n} \left| \left\langle \Psi_n^{A-1} \left| a_{\alpha} \right| \Psi_0^A \right\rangle \right|^2 \delta \left(E - \left(E_0^A - E_n^{A-1} \right) \right)$ *n* −∞ ^ε *F* − *Occupation numbers:* $n(\alpha) = \int S_h(\alpha; E) dE = \left\langle \Psi_0^A \left| a_\alpha^\dagger a_\alpha \right| \Psi_0^A \right\rangle$ Below $\varepsilon_F^- = E_0^A - E_0^{A-1}$ \Rightarrow $S_h(\alpha; E) = \frac{1}{\pi}$ $\varepsilon_F^- = E_0^A - E_0^{A-1}$ $\implies S_h(\alpha; E) = \frac{1}{\alpha} \text{Im } G(\alpha, \alpha; E)$ $S_{\ell j}^n = \int dr \; r^2 \Big| \Big\langle \Psi_n^{A-1} \Big| a_{r\ell j} \Big| \Psi_0^\ell$ Spectroscopic factor: $S_{\ell j}^n = \int dr \; r^2 \Big| \Big\langle \Psi_n^{A-1} \Big| a_{r \ell j} \Big| \Psi_0^A \Big\rangle \Big|^2$

Density matrix; natural orbits; Galitskii-Migdal energy sum rule ...

Theory & Framework

Answers for example: What do nucleons do in the nucleus and how does their behavior change as a function of asymmetry

Atoms

Closed-shell atoms: $n(\alpha)$ = 0 or 1

Nucleon propagator and dripline physics 4

Nuclei (e,e'p) reaction NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Wave functions as expected, except ….

 1.0 **Mean Field Theory** Removal probability for valence protons 1^{48} Ca ₉₀ Zr 16 O $_{31}P$ from 0.8 NIKHEF data L. Lapikás, Nucl. Phys. A553,297c (1993) $S/(2j+1)$ 0.6 7 Li 40 Ca ^{208}Pb $S \approx 0.65$ for valence protons 12_C 0.4 Reduction \Rightarrow both SRC and LRC 0.2 Note: We have seen mostly **VALENCE PROTONS** data for removal of 0.0 $10¹$ $10²$ valence protons target mass

Nucleon propagator and dripline physics 6

Two effects associated with short-range correlations

- Depletion of the Fermi sea
- Admixture of high-momentum components

Recent data confirm both aspects (predicted by nuclear matter results)

M. van Batenburg & L. Lapikás from ²⁰⁸Pb (e,e'p) ²⁰⁷Tl NIKHEF in preparation

Occupation of deeply-bound proton levels from **EXPERIMENT**

Confirms predictions for depletion

 $n(0) \Rightarrow 0.85$ Reid 0.87 Argonne V18 0.89 CDBonn

Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the whole mean-field domain for the FIRST time!!

SRC

Correlations for nuclei with N very different from Z? ⇒ Radioactive beam facilities

Nuclei are TWO-component Fermi liquids

- SRC about the same between pp, np, and nn
- Tensor force disappears for n when N >> Z but …
- Any surprises?
- Ideally: quantitative predictions based on solid foundation

Some pointers: both from theory and experiment

Nucleon propagator and dripline physics 11

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Program at MSU initiated by Gregers Hansen P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. **53**, 219 (2003)

neutrons more correlated with increasing proton number and accompanying increasing separation energy.

Dyson Equation and "experiment"

Equivalent to …

Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 \Rightarrow as observed in (e,e'p) *Schrödinger-like equation with:* $E_n^- = E_0^N - E_n^{N-1}$

$$
-\frac{\hbar^2 \nabla^2}{2m} \left\langle \Psi_n^{N-1} \left| a_{\vec{r}m} \right| \Psi_0^N \right\rangle + \sum_{m'} \int d\vec{r} \, \Sigma^* (\vec{r} m, \vec{r} \, m'; E_n^-) \left\langle \Psi_n^{N-1} \left| a_{\vec{r} \, m'} \right| \Psi_0^N \right\rangle = E_n^- \left\langle \Psi_n^{N-1} \left| a_{\vec{r}m} \right| \Psi_0^N \right\rangle
$$

$$
S = \left| \left\langle \Psi_n^{N-1} \middle| a_{\alpha_{qh}} \middle| \Psi_0^N \right\rangle \right|^2 = \frac{1}{1 - \frac{\partial \Sigma^* \left(\alpha_{qh}, \alpha_{qh}; E \right)}{\partial E}} \right|_{E_n^-}
$$

DE yields
$$
\left\langle \Psi_n^{N-1} \middle| a_{\vec{r}_m} \middle| \Psi_0^N \right\rangle = \psi_n^{N-1} (\vec{r}m)
$$

$$
\left\langle \Psi_0^N \middle| a_{\vec{r}_m} \middle| \Psi_k^{N+1} \right\rangle = \psi_k^{N+1} (\vec{r}m)
$$

$$
\left\langle \Psi_E^{c, N-1} \middle| a_{\vec{r}_m} \middle| \Psi_0^N \right\rangle = \chi_c^{N-1} (\vec{r}m; E)
$$

 α_{qh} solution of DE at E_n^{-1}

Bound states in N-1 Bound states in N+1 Scattering states in N-1 Elastic scattering in N+1

Nucleon propagator and dripline physics 13

Elastic scattering wave function for (p,p) or (n,n)

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

"Mahaux analysis" ⇒ Dispersive Optical Model (DOM)

C. Mahaux and R. Sartor, Adv. Nucl. Phys. **20**, 1 (1991)

There is empirical information about the nucleon self-energy!!

- ⇒ Optical potential to analyze elastic nucleon scattering data
- ⇒ Extend analysis from A+1 to include structure information in A-1 ⇒ (e,e'p) data
- ⇒ Employ dispersion relation between real and imaginary part of self-energy

Recent extension

Combined analysis of protons in 40Ca and 48Ca Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. **97**, 162503 (2006)

Large energy window (> 200 MeV)

Goal: Extract asymmetry dependence \Rightarrow δ = $(N - Z)/A$ ⇒ **Predict** proton properties at large asymmetry ⇒ 60Ca ⇒ **Predict** neutron properties … the dripline **based on data!**

Reaction cross section 40Ca and 48Ca

Loss of flux in the elastic channel

Potentials

Surface potential strengthens with increasing asymmetry for protons

Volume integrals

Nucleon propagator and dripline physics 16

Fit and predictions of n & p elastic scattering cross sections

Nucleon propagator and dripline physics 17

Present fit and predictions of polarization data

Nucleon propagator and dripline physics 18

Present fit to (e,e'p) data

Proton single-particle structure and asymmetry

Extrapolation in δ

Naïve: $p/n \Rightarrow \pm (N-Z)/A$

Cannot be extrapolated for n

Less naïve:

$$
U = V_0 + \frac{\vec{t} \cdot \vec{T}}{A} V_1
$$

 $p/n \Rightarrow \Theta(\pm(N-Z))\sqrt{(N-Z)})/A$

€ Emphasizes coupling to GT resonance

Need $n+48$ Ca elastic scattering data!!!

Nucleon propagator and dripline physics 21

Driplines

N

Proton dripline wrong by 1

Neutron dripline more complicated: 60Ca and 70Ca particle bound

Intermediate isotopes unbound Reef?

Improvements in progress

Replace treatment of nonlocality in terms of local equivalent but energy-dependent potential by explicitly nonlocal potential ⇒ Necessary for exact solution of Dyson equation

- Yields complete spectral density as a function of energy OK
- Yields one-body density OK
- Yields natural orbits OK
- Yields charge density OK
- Yields neutron density OK
- Data for charge density can be included in fit
- Data for (e,e'p) cross sections near E_F can be included in fit
- High-momentum components can be included (Jlab data)
- \cdot E/A can be calculated/ used as constraint \Rightarrow TNI
- NN Tensor force can be included explicitly
- Generate functionals for QP-DFT

Summary

• Proton sp properties in stable closed-shell nuclei understood (mostly)

Study of N≠Z nuclei based on DOM framework and experimental data

- Description of huge amounts of data
- Sensible extrapolations to systems with large asymmetry
- More data necessary to improve/pin down extrapolation
- More theory

Predictions

- N≠Z p more correlated while n similar (for N>Z) and vice versa
- Proton closed-shells with $N\gg Z \Rightarrow$ may favor pp pairing
- Neutron dripline may be more complicated (reef)

Deep-inelastic neutron scattering off quantum liquids

Probe: neutrons R.T. Azuah et al., J. Low Temp. Phys. **101**, 951 (1995)

Theory: Monte Carlo n(k) & FSE (ρ_2) beyond IA F. Mazzanti et al., Phys. Rev. Lett. **92**, 085301 (2004)

$$
J(Y) = \frac{1}{2\pi^2 \rho} \int_{|Y|}^{\infty} dk \, k \, n(k) \qquad \text{IA result}
$$

 $Y = \frac{m\omega}{q} - \frac{q}{2}$ scaling variable

Momentum distribution liquid 3He

S. Moroni et al., Phys. Rev. B**55**, 1040 (1997) Comparison of DMC, GFMC, and VMC & HNC

