

Fermi Hypernetted chain description of doubly closed shell nuclei

F. Arias de Saavedra,

Departamento de Física Atómica, Molecular y Nuclear,

Universidad de Granada, E-18071 Granada, Spain

C. Bisconti and G. Co',

Dipartimento di Fisica, Università del Salento,

and INFN sez. di Lecce, I-73100 Lecce, Italy

Phys. Rev. C73 (2006), 054304; C75 (2007) 054302;

Phys. Rep. in press (arXiv:0706.3792)

Ground-state energies.

- Ground-state energies.
- One- and two-body distribution functions.

- Ground-state energies.
- One- and two-body distribution functions.
- Momentum distributions.

- Ground-state energies.
- One- and two-body distribution functions.
- Momentum distributions.
- Natural orbits.

Outline

- Ground-state energies.
- One- and two-body distribution functions.
- Momentum distributions.
- Natural orbits.
- Quasi-hole wave functions and spectroscopic factors.

Outline

- Ground-state energies.
- One- and two-body distribution functions.
- Momentum distributions.
- Natural orbits.
- Quasi-hole wave functions and spectroscopic factors.
- Conclusions.

Fermi Hypernetted chain description of doubly closed shell nuclei - p.2/17

 $H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} .$

 $H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} .$

 $V_{ij} = \sum v^p(r_{ij})O^p_{ij}$ n=1

Fermi Hypernetted chain description of doubly closed shell nuclei – p.3/17

$$H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} .$$

$$V_{ij} = \sum_{p=1}^{8} v^p(r_{ij}) O_{ij}^p$$

 $O_{ij}^{p=1,8} = [1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}, (\mathbf{L} \cdot \mathbf{S})_{ij}] \otimes [1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j]$ Interaction used: A8'+UIX

$$\delta E[\Psi] = \delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0.$$

$$\delta E[\Psi] = \delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0.$$

Trial wave function

$$\Psi(1,...,A) = \mathcal{F}(1,...,A)\Phi(1,...,A)$$

 Φ Slater det. with Woods-Saxon pot.

Fermi Hypernetted chain description of doubly closed shell nuclei - p.4/17

$$\delta E[\Psi] = \delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0.$$

Trial wave function

$$\Psi(1,...,A) = \mathcal{F}(1,...,A)\Phi(1,...,A)$$

 Φ Slater det. with Woods-Saxon pot.

$$\mathcal{F}(1,...,A) = \mathcal{S}\left(\prod_{j>i=1}^{A}\sum_{p=1}^{6}f_p(r_{ij})O_{ij}^p\right)$$

Fermi Hypernetted chain description of doubly closed shell nuclei - p.4/17

$$\delta E[\Psi] = \delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0.$$

Trial wave function

$$\Psi(1,...,A) = \mathcal{F}(1,...,A)\Phi(1,...,A)$$

 Φ Slater det. with Woods-Saxon pot.

$$\mathcal{F}(1,...,A) = \left(\prod_{j>i=1}^{A} f_1(r_{ij})\right) \mathcal{S}\left(\prod_{j>i=1}^{A} \left(1 + \sum_{p=2}^{6} \frac{f_p(r_{ij})}{f_1(r_{ij})}O_{ij}^p\right)\right)$$

 f_p obtained with Euler procedure.

Euler correlations

Ground-state energies

AV8'+UIX	12 C	¹⁶ O	⁴⁰ Ca	⁴⁸ Ca	²⁰⁸ Pb
Т	27.13	32.33	41.06	39.64	39.56
V_{2-body}	-29.38	-38.63	-49.36	-46.95	-48.88
V _{Coul}	0.67	0.86	1.97	1.57	3.97
$T+V_2$	-1.58	-5.34	-6.34	-5.74	-5.35
V_{3-body}	0.67	0.86	1.76	1.61	1.91
	-0.91	-4.48	-4.58	-4.14	-3.43
E_{exp}	-7.68	-7.97	-8.55	-8.66	-7.86

Fermi Hypernetted chain description of doubly closed shell nuclei – p.6/17

Estimation of the rest of the channels in the interaction using nuclear matter calculations.

	12 C	16 O	40 Ca	⁴⁸ Ca	208 Pb
$\langle k_F \rangle$	1.09	1.09	1.19	1.19	1.21
E	-0.91	-4.48	-4.58	-4.14	-3.43
ΔE	-0.93	-0.93	-1.37	-1.37	-1.48
E + ΔE	-1.84	-5.41	-5.95	-5.51	-4.91

Fermi Hypernetted chain description of doubly closed shell nuclei – p.7/17

OBDF and TBDF

$$\rho^{t_1}(\mathbf{r}_1) = \frac{\mathcal{N}_{t_1}}{\langle \Psi | \Psi \rangle} \int dx_2 \dots dx_A \\ \times \Psi^*(x_1, \dots, x_A) P_1^{t_1} \Psi(x_1, \dots, x_A) , \\ \rho_2^{q, t_1 t_2}(\mathbf{r}_1, \mathbf{r}_2) = \frac{\mathcal{N}_{t_1}(\mathcal{N}_{t_2} - \delta_{t_1 t_2})}{\langle \Psi | \Psi \rangle} \int dx_3 \dots dx_A \\ \times \Psi^*(x_1, \dots, x_A) P_1^{t_1} O_{12}^q P_2^{t_2} \Psi(x_1, \dots, x_A)$$

 $\mathcal{N}_p = Z \text{ and } \mathcal{N}_n = N$

Fermi Hypernetted chain description of doubly closed shell nuclei - p.8/17

Neutron density functions

.DD

Momentum distribution

$$\rho(x_1, x_1') = \sum_{s, s', t} \rho^{s, s'; t}(\mathbf{r}_1, \mathbf{r}_1') \chi_s^+(1) \chi_t^+(1) \chi_{s'}(1') \chi_t(1')$$

= $\frac{A}{\langle \Psi | \Psi \rangle} \int dx_2 \dots dx_A \Psi^{\dagger}(x_1, \dots, x_A) \Psi(x_1', \dots, x_A)$

$$\rho^{t}(\mathbf{r}_{1},\mathbf{r}_{1}') = \sum_{s=\pm 1/2} \left[\rho^{s,s;t}(\mathbf{r}_{1},\mathbf{r}_{1}') + \rho^{s,-s;t}(\mathbf{r}_{1},\mathbf{r}_{1}') \right] ,$$

$$n^{t}(k) = \frac{1}{(2\pi)^{3}} \frac{1}{\mathcal{N}_{t}} \int d\mathbf{r}_{1} d\mathbf{r}_{1}' e^{i\mathbf{k}\cdot(\mathbf{r}_{1}-\mathbf{r}_{1}')} \rho^{t}(\mathbf{r}_{1},\mathbf{r}_{1}') ,$$

Fermi Hypernetted chain description of doubly closed shell nuclei - p.12/17

Natural orbits

$$\rho^t(\mathbf{r}_1, \mathbf{r}_1') = \sum_{nlj} c_{nlj}^t \phi_{nlj}^{*t,NO}(\mathbf{r}_1) \phi_{nlj}^{t,NO}(\mathbf{r}_1')$$

Occupation numbers of protons for ⁴⁸Ca.

Quasi hole wave functions

$$\psi_{nljm}^{t}(x) = \frac{\sqrt{A} < \Psi_{nljm}^{t}(1, ..., A - 1) |\delta(x - x_{A})P_{A}^{t}|\Psi(1, ..., A) > \langle \Psi_{nljm}^{t}|\Psi_{nljm}^{t}|\Psi_{nljm}^{t}|^{1/2} < \Psi|\Psi|^{1/2}}$$

$$\Psi_{nljm}^t(1,...,A-1) = \mathcal{F}(1,...,A-1)\Phi_{nljm}^t(1,...,A-1)$$

Interested in its radial part:

$$\psi_{nlj}^t(r) = \frac{1}{2j+1} \sum_m \int d\Omega \, \mathbf{Y}_{lj}^{*m}(\Omega) \, \psi_{nljm}^t(x)$$

Fermi Hypernetted chain description of doubly closed shell nuclei - p.15/17

Spectroscopic factors

$$S_{nlj}^t = \int dr \, r^2 \, |\psi_{nlj}^t(r)|^2$$

Proton spectroscopic factors for ²⁰⁸Pb.

Conclusions

CBF calculations in finite nuclei are as accurate as nuclear matter ones.

Conclusions

- CBF calculations in finite nuclei are as accurate as nuclear matter ones.
- Short-range correlations are important to describe nuclei.