Many-Body challenges in nuclear astrophysics

Gabriel Martínez Pinedo

Recent Progress in Many-Body Theories

July 16, 2007

Introduction

Nucleosynthesis heavy elements (r-process) Conclusions

Outline

Introduction

- Reactions involving light nuclei
 - Extending ab initio approaches to reactions
 - Fermion Molecular Dynamics
- 3 Weak processes in supernovae
 - Electron capture
 - Neutrino-nucleus reactions
- In Nucleosynthesis heavy elements (r-process)

Introd	lucti	on	
0000			

Nucleosynthesis heavy elements (r-process) Conclusions

Outline

Introduction

- 2 Reactions involving light nuclei
 - Extending ab initio approaches to reactions
 - Fermion Molecular Dynamics
 - Weak processes in supernovae
 - Electron capture
 - Neutrino-nucleus reactions
- In Nucleosynthesis heavy elements (r-process)

Introd	ucti	

Nucleosynthesis heavy elements (r-process) Conclusions

Outline

Introduction

- 2 Reactions involving light nuclei
 - Extending ab initio approaches to reactions
 - Fermion Molecular Dynamics
- Weak processes in supernovae
 - Electron capture
 - Neutrino-nucleus reactions
- Oucleosynthesis heavy elements (r-process)

Introd	ucti	
0000		

Nucleosynthesis heavy elements (r-process) Conclusions

Outline

Introduction

- 2 Reactions involving light nuclei
 - Extending ab initio approaches to reactions
 - Fermion Molecular Dynamics
- Weak processes in supernovae
 - Electron capture
 - Neutrino-nucleus reactions
- Mucleosynthesis heavy elements (r-process)

Introd	uction
0000	

Nucleosynthesis heavy elements (r-process) Conclusions

Outline

Introduction

- 2 Reactions involving light nuclei
 - Extending ab initio approaches to reactions
 - Fermion Molecular Dynamics
- Weak processes in supernovae
 - Electron capture
 - Neutrino-nucleus reactions
- Mucleosynthesis heavy elements (r-process)

Nucleosynthesis heavy elements (r-process) Conclusions

Nuclear Astrophysics

- New radioactive ion beam facilities (RIBF, SPIRAL 2, FAIR) are being built or developed that allow to explore many nuclei produced in explosive events.
- We need improved many body models to fully exploit the potential offered by these facilities.

Weak processes in supernovae 00000000 Nucleosynthesis heavy elements (r-process) Conclusions

Nuclear Interaction and Dregrees of Freedom

Veak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Green's Function Monte Carlo

Wiringa, Pieper, PRL 89 (2002) 182501

Introduction	Reactions involving light nuclei	Weak processes in supernovae	Nucleosynthesis heavy elements (r-process)	Conclusions
00000				

No-Core Shell Model

- Solves the nuclear many body problem for light nuclei using realistic NN forces.
- The calculations are done in a large but finite harmonic-oscillator basis using an effective interaction derived via an unitary Lee-Suzuki transformation.

Problems describing states with a clear cluster structure like the Hoyle state (0⁺ at 7.654 MeV in ¹²C)

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Quest for a unified description of nuclei

Nucleosynthesis heavy elements (r-process) Conclusions

Ab initio approaches

Several attempts have been pursued to extend *ab initio* approaches to astrophysical reactions.

- Variational Monte Carlo calculations have been done for ${}^{2}H(\alpha, \gamma)^{6}Li$, ${}^{3}H(\alpha, \gamma)^{7}Li$, and ${}^{3}He(\alpha, \gamma)^{7}Be$ capture reactions (Nollet *et al*, PRC **63** (2001) 054002).
- ⁷Be(p, γ)⁸B have been computed using the no-core shell model approach (Navrátil *et al* **73** (2006) 065801).
- They are not yet completely *ab initio* as the scattering states are computed using simple potential models.

We need a consistent description of bound, resonant and scattering states.

Nucleosynthesis heavy elements (r-process) Conclusions

Fermion Molecular Dynamics

Fermionic

Feldmeier & Schnack, RMP 72 (2000) 655

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes \cdots \otimes |q_A\rangle)$$

antisymmetrized A-body state

Molecular

single particle states

$$\langle \vec{x} | q \rangle = \sum_{i} c_{i} \exp\left\{-\frac{(\vec{x} - \vec{b}_{i})^{2}}{2a_{i}}\right\} \otimes \left|\chi^{\uparrow}_{i}, \chi^{\downarrow}_{i}\right\rangle \otimes \left|\xi\right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter \vec{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed.
- width a_i (and \vec{b}_i) are independent variational parameters for each wave packet.

Dynamics

- Interaction derived from Argonne V18 interaction by explicit inclusion of short-range central and tensor correlations via the Unitary Correlation Operator Method (Neff & Feldmeier, NPA 713 (2003) 311)
- Projection on parity, linear and angular momentum (before or after variation).

Introduction 00000 Reactions involving light nuclei

Weak processes in supernovae 00000000 Nucleosynthesis heavy elements (r-process) Conclusions

Hoyle State and tripple α reaction

Introduction	

Reactions involving light nuclei

Weak processes in supernova 00000000 Nucleosynthesis heavy elements (r-process) Conclusions

¹²C description

 Introduction
 Reactions involving light nuclei
 Weak processes in supernovae
 Nucleosynthesis here

 00000
 0000●0
 0000000
 000000

Nucleosynthesis heavy elements (r-process) Conclusions

Important Configurations and Occupation numbers

 Most important contributions to Hoyle state and ground state (FMD states not orthogonal)

$$\begin{vmatrix} \langle \cdot | 0_1^+ \rangle \end{vmatrix} = 0.30 \quad \left| \langle \cdot | 0_1^+ \rangle \right| = 0.25 \quad \left| \langle \cdot | 0_1^+ \rangle \right| = 0.15 \quad \left| \langle \cdot | 0_1^+ \rangle \right| = 0.08$$
$$\begin{vmatrix} \langle \cdot | 0_2^+ \rangle \end{vmatrix} = 0.72 \quad \left| \langle \cdot | 0_2^+ \rangle \right| = 0.71 \quad \left| \langle \cdot | 0_2^+ \rangle \right| = 0.61 \quad \left| \langle \cdot | 0_2^+ \rangle \right| = 0.61$$

 $\begin{vmatrix} \left\langle \cdot \mid 0_1^+ \right\rangle \end{vmatrix} = 0.94$ $\begin{vmatrix} \left\langle \cdot \mid 0_2^+ \right\rangle \end{vmatrix} = 0.04$

• Harmonic Oscillator Occupation Numbers.

Nucleosynthesis heavy elements (r-process) Conclusions

Astrophysical applications

Nucleosynthesis heavy elements (r-process) Conclusions

Electron capture during the collapse

Important processes:

- Neutrino transport (Boltzmann equation):
 - $v + A \rightleftharpoons v + A$ (trapping)
 - $v + e^- \rightleftharpoons v + e^-$ (thermalization)

cross sections ~ E_{ν}^2

- electron capture on protons: $e^- + p \rightleftharpoons n + v_e$
- electron capture on nuclei: $e^- + A(Z, N) \rightleftharpoons A(Z-1, N+1) + v_e$
- Traditional treatment (Independent particle model) suppresses electron capture on nuclei for *N* = 40.
- Gamow-Teller strength can be determined by charge exchange reactions
- Theory is needed to account for finite temperature effects (excited states) (Shell-Model diagonalizations, Shell-Model (Auxiliary Field) Monte Carlo

Nucleosynthesis heavy elements (r-process) Conclusions

Level densities with Auxiliary Field Monte Carlo

- Level densities are necessary for the calculation of cross sections in medium and heavy nuclei using the Hauser-Feshbach statistical model and for the calculation of partition functions.
- AFMC has been extensively been used for the calculation of level densities using schematical interactions (pairing plus quadrupole) due to sign problem (Alhassid, Langanke, ...).
- Very recently has been possible to avoid the sign problem shifting the MC integration to the Hartree minimum of the fields.
- This allows to use fully realistic interactions.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Laboratory vs. stellar electron capture

Capture of K-shell electrons to tail of GT strength distribution. Parent nucleus in the ground state Capture of electrons from the high energy tail of the FD distribution. Capture to states with large GT matrix elements (GT resonance). Thermal ensemble of initial states.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

KVI results using $(d, {}^{2}\text{He})$

GT strength in ⁴⁸Sc, ⁵⁰V, ⁵⁸Ni, ⁶⁴Ni also measured.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Effects Realistic calculation

- Electron capture on nuclei dominates over capture on protons
- All models converge to a "norm" stellar core at the moment of shock formation.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Neutrino interactions during the collapse

- Elastic scattering: $v + A \rightleftharpoons v + A$ (trapping)
- Absorption:
 - $v_e + (N, Z) \rightleftharpoons e^- + (N 1, Z + 1)$
- $v \cdot e$ scattering: $v + e^- \rightleftharpoons v + e^-$ (thermalization)
- Inelastic ν -nuclei scattering: $\nu + A \rightleftharpoons \nu + A^*$

Inelastic Neutrino-nucleus interactions had not been included in collapse simulations.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Neutrino scattering from (e, e')

M1 data give GT_0 information if Orbital contribution can be removed

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Neutrino Scattering from (e, e')

M1 data (S-Dalinac) can be used to constrain supernovae inelastic neutrino cross sections.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Influence on neutrino spectra

- A future detection of a close by supernova could bring information about supernova dynamics.
- We have done detailed simulations and shown that the spectrum of the initial v_e burst is affected by the inclusion of inelastic neutrino scattering with nuclei (B. Müller *et al*).
- At later times (relevant for nucleosynthesis) spectra is unchanged as all nuclei are dissociated.

Material	$\langle \sigma angle$ (10 ⁻⁴² cm ²)		Change
	With INNS	Without INNS	
e	0.106	0.110	3%
d	4.92	5.36	8%
¹² C	0.050	0.080	37%
¹⁶ O	0.0053	0.0128	58%
40 Ar	13.4	15.1	11%
⁵⁶ Fe	6.2	7.5	17%
²⁰⁸ Pb	103.3	124.5	17%

Langanke et al arXiv:0706.1687

Introduction	Reactions involving light nuclei	Weak processes in supernovae	Nucleosynthesis heavy elements (r-process)	Co
			00000	

The r-process

The r-process is responsible for the synthesis of half the nuclei with A > 60 including U, Th and maybe the super-heavies.

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusions

Neutrino-driven wind scenario

- Neutrino-wind from (cooling) NS $v_e + n \rightarrow e^- + p$ $\bar{v}_e + p \rightarrow e^+ + n$
- α -process (formation seed nuclei) ⁴He($\alpha n, \gamma$)⁹Be(α, n)¹²C ⁴He(t, γ)⁷Li(n, γ)⁸Li(α, n)¹¹Li

Main parameter determining the nucleosynthesis is the neutron to seed ratio (~ 100)

Introduction	Reactions involving light nuclei	Weak processes in

Nucleosynthesis heavy elements (r-process) Conclusions

r-process needs

figure from H. Schatz

Nucleosynthesis heavy elements (r-process) Conclusions

Masses for r-process nuclei

We need reliable models to determine masses for r-process nuclei (DFT with functional connected to QCD via EFT)

Weak processes in supernovae

Nucleosynthesis heavy elements (r-process) Conclusion 0000●0

Beta-decay half-lives (N=126)

The N=126 nuclei are not yet accessible experimentally. However, in a recent experiment at the FRS (GSI) several nuclei were produced approaching the N = 126 (Kurtukian-Nieto *et al*, 2007)

Introduction	Reactions involving light nuclei	Weak processes in supernovae	Nucleosynthesis heavy elements (r-process)	Conclusions
			000000	

Influence on the input data

Two different sets of neutron capture rates, half-lives, fission-barriers, ...

Conclu				
Introduction	Reactions involving light nuclei	Weak processes in supernovae	Nucleosynthesis heavy elements (r-process)	Conclusions

- Nuclear astrophysics requires the knowledge of the relevant nuclear physics input combined with state-of-the-art hydrodynamic modelling, which then leads to testable predictions with actual observations.
- Future challenges for nuclear structure theory are the extension of ab-initio calculations based on realistic nucleon-nucleon interactions to nuclei beyond A = 12, and extend ab-initio models to the description of nuclear reactions.
- The r-process requires large amounts of data. We need to develop models that are generally applicable and at the same time describe reliable the properties of the involved nuclei.