Coupled-cluster approach to an ab-initio description of nuclei

Morten Hjorth-Jensen

Department of Physics and Center of Mathematics for Applications University of Oslo, N-0316 Oslo, Norway

17th July 2007

 \leftarrow \overline{m} \rightarrow

 \leftarrow \Box

 \rightarrow \pm \rightarrow

Outline

- 2 [Effective Interactions, Renormalize short-range!](#page-9-0)
- 3 [Coupled Cluster theory](#page-13-0)

4 0 8 1

4 伊 ▶

人名英格兰人姓氏

哇

Aims and Motivation

- ¹ Facilities like RIKEN/FAIR/Eurisol/RIA(mini) can offer unprecendeted data on weakly bound systems. Increased experimental intensities.
- **2** Crucial for Nuclear physics next 10 years : understand how shells evolve
- **3** Identify and investigate methods that will extend to unstable systems
- **•** Combine effective interactions for unstable systems and the shell model (CI)
- ⁵ Want an 'ab initio' and reductionist approach starting with both NN and NNN interactions

→ 三 → 一

⁶ Complement the shell model (CI) for heavier systems

Nuclear Many-Body Methods

- **4** Variational and Diffusion Monte Carlo/GFMC (Benchmark-test $A < 12$)
- ² Shell-model (CI), Monte Carlo shell model and No-core shell-model
- **3** Coupled cluster theory
- **4** Perturbative many-body methods
- ⁵ Parquet diagrams, Green's function method, FHNC, ab initio DFT,.....

④ 目→ → (目)

⁶ Extention to weakly bound systems : Complex scaling and complex shell model, Gamow shell model.

Progress in our QCD understanding of the NN force

- CEBAF 12 GeV upgrade: Explore the limits of our understanding of the atomic nuclei based on nucleonic and mesonic degrees of freedom
	- 1 Experimental plans aim at identifying and exploring the transition from the nucleon/meson description of nuclei to the underlying quark and gluon description.
	- 2 Test the short-range behavior of the NN interaction via deep inelastic scattering
- Effective field theory has made progress in constructing NN and NNN forces from the underlying symmetries of QCD
- Three-body forces emerge naturally and have explicit expressions at every order in the chiral expansion.

K ロ ▶ 〈 伊 ▶ 〈 唐 ▶ 〈 唐 ▶

 Ω

● Recent progress in Lattice QCD may hold great promise for the construction/paremetrization of the nucleon-nucleon interaction.

Progress in our QCD understanding of the NN force

- CEBAF 12 GeV upgrade: Explore the limits of our understanding of the atomic nuclei based on nucleonic and mesonic degrees of freedom
	- 1 Experimental plans aim at identifying and exploring the transition from the nucleon/meson description of nuclei to the underlying quark and gluon description.
	- 2 Test the short-range behavior of the NN interaction via deep inelastic scattering
- Effective field theory has made progress in constructing NN and NNN forces from the underlying symmetries of QCD
- Three-body forces emerge naturally and have explicit expressions at every order in the chiral expansion.

K ロ ▶ 〈 伊 ▶ 〈 唐 ▶ 〈 唐 ▶

 Ω

• Recent progress in Lattice QCD may hold great promise for the construction/paremetrization of the nucleon-nucleon interaction.

Lattice QCD, Ishii et al, nucl-th/0611096, PRL 2007

The nucleon-nucleon interaction, Phenomenology vs Lattice calculations.

 \leftarrow \Box

高

2N and 3N Interactions from Effective Field Theory

Nucleons and Pions as effective degrees of freedom only. Chiral perturbation theory for different orders (ν) of the expansion in terms of momentum/pion mass.

(ロ) (@) (결) (1)

 Ω

Three-Nucleon Force at chiral order $\nu = 3$.

Two and three-body Correlations in Nuclei [RPMBT14 16-20 July 2007](#page-0-0)

重

Effective Hamiltonian and Model Spaces

$$
M\leq 2n+l\approx 4-20
$$

Two-Body Effective Hamiltonian for Large Space

Need to renormalize short-range behavior of V:

$$
G_{ijkl} = V_{ijkl} + \sum_{mn \in Q} V_{ijmn} \frac{Q}{\omega - \varepsilon_m - \varepsilon_n} G_{mnkl}
$$

- **Harmonic oscillator basis**
- Note well energy ω dependence!
- \bullet 2N interactions $+$ Coulomb. Compute via matrix inversion.

Effective Hamiltonian for Large Spaces II

$$
M \leq 2n + l \approx 200
$$

$$
h \leq 2n + l \approx 4 - 20
$$

Similarity Transformation **•** Diagonalize $H_2^{\Omega} = \frac{\vec{p}_1^2 + \vec{p}_2^2}{2m}$ $rac{+\vec{p}_2^2}{2m} + \frac{1}{2}$ $\frac{1}{2}m\Omega^2(\vec{r}_1^2+\vec{r}_2^2)$ $+V(\vec{r}_1 - \vec{r}_2) - \frac{m\Omega^2}{24}$ $\frac{n\Delta L}{2A}(\vec{r}_1 - \vec{r}_2)^2$ Use similarity-transformation to

- obtain V_{eff} for smaller space.
- No energy dependence! HO basis.

∢ @ ▶ → 할 ▶ → 할 ▶

つくい

Algorithm

Start with the two-body equation

$$
H_2^{\Omega} \equiv H_{02}^{\Omega} + V_2^{\Omega} = \frac{\vec{p}_1^2 + \vec{p}_2^2}{2m} + \frac{1}{2}m\Omega^2(\vec{r}_1^2 + \vec{r}_2^2) + V(\vec{r}_1 - \vec{r}_2) - \frac{m\Omega^2}{2A}(\vec{r}_1 - \vec{r}_2)^2
$$

.

→ 三 → 一

- Define A for the specific nucleus
- Define a large space in terms of the harmonic oscillator shells $2n + l \sim 200 - 300$
- Diagonalize exactly the two-body problem.
- Transform to a smaller space with $2n + 1 \sim 4 20$ via adequate similarity transformations

$V_{\text{low}-k}$ in large spaces

- Diagonalize the two-body Schroedinger equation in momentum space for all momenta
- Choose a cutoff which defines the model space in terms of relative momenta
- Use exact eigenvalues and momenta to perform a similarity transformation
- **O** Obtain effective interaction in relative momenta
- Integrate to get harmonic oscillator matrix elements for relative quantum numbers
- **O** Transform to lab frame

Potential drawback: no connection with harmonic oscillator cutoff. Interaction stays the same irrespective of the number of shells.

All two-body interactions need to be accompanied by at least a three-body interaction.

(ロ) (@) (결) (1)

 Ω

What do we want?

- ¹ Want a many-body formalism which allows one to include in a systematic way various many-body correlations.
- ² These correlations should be summed to infinite order (want a size-extensive theory)
- **3** Should be able to describe both bound and weakly bound systems.
- **4** Complement the shell model for heavier systems and extract better effective interactions for the nuclear shell model
- ⁵ Strategy: combine coupled cluster with shell-model (CI)

Why Coupled-Cluster theory?

Advantages

- Fully microscopic. Only linked diagrams enter, size extensive
- Can be improved upon systematically, e.g., by inclusion of three-body interactions and more complicated correlations. To be contrasted to many-body perturbation theory.
- Allows for description of both closed-shell systems and valence systems
- Derivation of effective two and three-body interactions for the shell model
- Amenable to parallel computing
- Huge development in Quantum Chemistry. Exploit this for the nuclear many-body problem.

 4 \Box \rightarrow 4 \Box \rightarrow

→ (重) → →

 Ω

More on Coupled Cluster

More advantages

• Can be used to generate excited spectra for nuclei like ¹⁶O or 40 Ca with many shells. Hard for the shell model to go beyond one major shell. Huge dimensionalities in shell-model (CI) calcs

Shell-model (CI) codes can today reach dimensionalities of $d \sim 10^{10}$ basis states.

(ロ) (@) (결) (1)

 Ω

• Can include complex effective interactions

Coupled Cluster with Triple Correlations

Correlated many-body wave function is given by

 $|\Psi\rangle = \exp(T) |\Phi_0\rangle$,

with the reference Slater determinant as $|\Phi_0\rangle$ and the correlation operator as $T = T_1 + T_2 + T_3 + \cdots + T_A$

$$
T_1=\sum_{i<\varepsilon_f,a>\varepsilon_f}t_i^a a_a^+a_i
$$

for single excitations (S, 1p-1h)

$$
\mathcal{T}_2 = \frac{1}{4} \sum_{i,j < \varepsilon_f; ab > \varepsilon_f} t_{ij}^{ab} a^+_a a^+_b a_j a_i
$$

for double excitations (D, 2p-2h) and

$$
\mathcal{T}_3 = \frac{1}{36} \sum_{i,jk < \varepsilon_f; abc > \varepsilon_f} t_{ijk}^{abc} a_a^+ a_b^+ a_c^+ a_k a_j a_i
$$

 $\mathcal{A} \subseteq \mathcal{A} \quad \mathcal{A} \subseteq \mathcal{B} \quad \mathcal{A} \subseteq \mathcal{B} \quad \mathcal{A} \subseteq \mathcal{B}$

つくい

for triple excitations (T, 3p-3h)

Coupled Cluster equations

Define:

$$
f=\sum_{pq}f_{pq}\{a_p^+a_q\}
$$

with f_{pq} the Fock matrix elements

$$
W = \frac{1}{4} \sum_{pqrs} \langle pq||rs \rangle \{a_p^+ a_q^+ a_r a_s\}
$$

where $\langle pq||rs\rangle$ are anti-symmetrized two-body matrix elements. Normal-order creation and annihilation operators.

K ロ ▶ | K 御 ▶ | K 重 ▶ | K 重 ▶

哇

Coupled Cluster, CCSDT level

The extention to triples gives the following equations for the amplitudes with 1p-1h $\langle \Phi_i^a | [fT_1+f(T_2+1/2T_1^2)+WT_1+W(T_2+1/2T_1^2)+W(T_1T_2+1/6T_1^3+T_3)]_C |\Phi \rangle =0,$ and with 2p-2h $\langle \Phi_{ij}^{ab} | [f \mathcal{T}_1 + f (\mathcal{T}_3 + \mathcal{T}_2 \mathcal{T}_1) + W + W \mathcal{T}_1 + W (\mathcal{T}_2 + 1/2 \mathcal{T}_1^2) + W (\mathcal{T}_1 \mathcal{T}_2 + 1/6 \mathcal{T}_1^3 + \mathcal{T}_3)$ $+W({\textit{T}}_1{\textit{T}}_3+1/2{\textit{T}}_2^2+1/2{\textit{T}}_2{\textit{T}}_1^2+1/24{\textit{T}}_1^4)]_C|\Phi\rangle=0.$ and with 3p-3h $\langle\Phi_{ijk}^{abc}| [f\mathcal{T}_3 + f(\mathcal{T}_3\mathcal{T}_1+1/2\mathcal{T}_2^2)+W\mathcal{T}_2+W(\mathcal{T}_3+\mathcal{T}_1\mathcal{T}_2)+W(1/2\mathcal{T}_2+\mathcal{T}_3\mathcal{T}_11/2\mathcal{T}_1^2+\mathcal{T}_1)$

$$
+W(\mathcal{T}_2\mathcal{T}_3+1/2\mathcal{T}_2^2\mathcal{T}_1+1/2\mathcal{T}_3\mathcal{T}_1^2+1/6\mathcal{T}_2\mathcal{T}_1^3)]_\mathcal{C}|\Phi\rangle=0.
$$

 OQ

Coupled Cluster

When the equations have been solved we have defined the amplitudes t^{\ldots}_{\ldots}

$$
T_1=\sum_{i<\varepsilon_f,a>\varepsilon_f}t_i^a a_a^+a_i
$$

$$
\mathcal{T}_2 = \frac{1}{4} \sum_{i,j < \varepsilon_f; ab > \varepsilon_f} t_{ij}^{ab} a_a^+ a_b^+ a_j a_i
$$

$$
\mathcal{T}_3 = \frac{1}{36} \sum_{i,jk < \varepsilon_f; abc > \varepsilon_f} t_{ijk}^{abc} a_a^+ a_b^+ a_c^+ a_k a_j a_i
$$

and can then extract effective interactions. Different approximations to the solution of the triples equations yield different CCSDT approximations. CCSD scales as $n_o^2 n_u^4$ while full CCSDT scales as $n_o^3 n_u^5$, with n_o the number of occupied orbits and n_{μ} the number of unoccupied.

→ 三 → 一

Acronyms, summary

- **1** CCSD: coupled cluster with single and double excitations only
- **2** CCSD(T) : CCSD energy is augmented by a perturbative treatment of triple excitation effects, normally reliable
- **3** CCSDT-1: skip WT_1T_3 in 2p-2h part and keep only TT_3 and $WT₂$ in 3p-3h
- ⁴ CCSDT-2: full 2p-2h and 3p-3h as in CCSDT-1
- **O** CCSDT-3 : All terms in 3p-3h except the T_3 term.
- **⁶** CCSDT: all terms

Excellent review by Bartlett and Musial in Rev. Mod. Phys. 79, 291 (2007).

(ロ) (@) (결) (1)

 Ω

Benchmarks, ⁴He

$V_{\text{low}-k}$

- $V_{\text{low}-k}$ with $\Lambda = 1.9$ $\rm fm^{-1}$ and $\hbar\omega=14$ MeV
- Argonne V_{18} interaction
- **•** Comparison with FY calculations, agreement with FY within 10 keV (FY

④ 重 トーモ

■ ▶

 Ω

error 50 keV))

(ロ) (d) :

Benchmarks, ¹⁶O

$\hbar\omega$ dependence

 \bullet V_{low−k}

← ロ → → 伊 →

- \bullet Argonne V_{18} interaction
- With increasing number of shells $2n + l$ $\hbar\omega$ dependence disappears.

←周下

目下 目

Benchmarks, ¹⁶O

Extrapolation

- $V_{\text{low}-k}$ with $\Lambda = 1.9$ $\rm fm^{-1}$ and $\hbar\omega=14$ MeV
- \bullet Argonne V_{18} interaction

(ロ) (d) :

• Note overbinding, need to accompany a two-body interaction with three-body interaction

④重きし

■ ▶

Benchmarks, ⁴⁰Ca

Extrapolation

← ロ → → 伊 →

- $V_{\text{low}-k}$ with $\Lambda = 1.9$ fm $^{-1}$ and $\hbar\omega = 20$ MeV. Argonne V_{18} .
- Note considerable overbinding, need to accompany a two-body interaction with three-body interaction. Different NN forces need different NNN forces. Largest space 10⁶⁶ .

④重きし

目下

 Ω

Helium Isotopes

Weakly bound and unbound nuclei – requires continuum states: complex coupled-clusters [Hagen et al, PRL (2006)]

K ロ ▶ | K 倒 ▶ | K ヨ ▶ | K ヨ ▶

哇

Coupled Cluster, Complex Scaling and He Isotopes

spin projection is maximal. Orbits with largest m_i filled first.

(ロ) (d)

- (唐) (唐)

Coupled Cluster, Complex Scaling and He Isotopes

5s5p5d4f44h4i proton orbitals and $20s20p5d4f44h4i$ neutron orbitals. For 10 this is approximately 10^{22} basic states.

K ロ ▶ 〈 *同* ▶ 〈 결 ▶ 〈 결 ▶

つくい

$\hbar\omega$ dependence of the real part of the ⁵He ground state energy

Two and three-body Correlations in Nuclei [RPMBT14 16-20 July 2007](#page-0-0)

4日)

高

E

$\hbar\omega$ dependence of the imaginary part of the ⁵He ground state energy

4日)

高

后

目下

重

⁴He and three-body, preliminary

Scheme

4 0 8

4 伊 ▶

 \bullet V_{low−k} Hamiltonian based on V_{18} interaction with (full) three-body interaction added and without (dashed) .

\n- $$
V_{\text{low-}k}
$$
 with $\Lambda = 1.9$ fm⁻¹.
\n

• Only $T = 1/2$ and $J = 1/2$ part of three-body interaction.

←周末。

つくい

⁴He and three-body

4日)

◀ @

重

K ロ ▶ 〈 伊 ▶ 〈 唐 ▶ 〈 唐 ▶

 $2Q$

Summary: much Work in Progress

- **•** Three-body forces included in CC calculations, give density dependent two-body forces.
- Can now extract effective interactions for the nuclear shell-model, with and without three-body forces.
- Inclusion of continuum effects, complex coupled-cluster code and complex effective interactions
- Three-body forces included in CC calculations, give density dependent two-body forces.
- **O** Current interest: Helium and Oxygen isotopes, especially from ²⁰O till ²⁸O. several experiments at for example RIKEN and NSCL-MSU, ²³O, ²⁴O and ²⁵O.
- Ground state properties of closed-shell nuclei, from ⁴He to ²⁰⁸Pb: Now ⁵⁶Ni.
- How much due to three-body forces and how much due to coupling to continuum with only two-body?
- Can we understand how shells evolve? Is it due to three-body effects or continuum effects, or something else?

(ロ) (@) (경) (1

つくい

Selected Articles

- **Kowalski et al, Phys. Rev. Lett. 92, 132501 (2004).**
- **Wloch et al, Phys. Rev. Lett. 94, 132501 (2005).**

Hagen, Hjorth-Jensen, and Michel, Phys. Rev. C 73, 064307 (2006), complex scaling

Hagen et al, nucl-th/0610072, Phys. Lett. B, in press, complex scaling

Hagen *et al*, nucl-th/0704.2854, Phys. Rev. C, in press, three-body interaction

Hagen et al, nucl-th/0707.1516, Phys. Rev. C, submitted, benchmark calculations

K ロ ▶ | K 倒 ▶ | K ヨ ▶ | K ヨ ▶

 Ω

ORNL-OSLO-Michigan Many-Body project

ORNL

David Dean, Gaute Hagen, Thomas Papenbrock and Achim Schwenk (TRIUMF)

Oslo

Elise Bergli, Morten Hjorth-Jensen, Maxim Kartamychev

Michigan, MSU and CMU

Jeff Grour, Mihai Horoi, Piotr Piecuch, and Marta Wloch