Coupled-cluster approach to an *ab-initio* description of nuclei

Morten Hjorth-Jensen

Department of Physics and Center of Mathematics for Applications University of Oslo, N-0316 Oslo, Norway

17th July 2007

Outline

2 Effective Interactions, Renormalize short-range!

3 Coupled Cluster theory

・ロト ・日ト ・ヨト ・ヨト

Aims and Motivation

- Facilities like RIKEN/FAIR/Eurisol/RIA(mini) can offer unprecendeted data on weakly bound systems. Increased experimental intensities.
- Crucial for Nuclear physics next 10 years : understand how shells evolve
- Identify and investigate methods that will extend to unstable systems
- Combine effective interactions for unstable systems and the shell model (CI)
- Want an 'ab initio' and reductionist approach starting with both NN and NNN interactions

(□) (□) (Ξ) (Ξ)

• Complement the shell model (CI) for heavier systems

Nuclear Many-Body Methods

- Variational and Diffusion Monte Carlo/GFMC (Benchmark-test A ≤ 12)
- Shell-model (CI), Monte Carlo shell model and No-core shell-model
- Oupled cluster theory
- O Perturbative many-body methods
- Parquet diagrams, Green's function method, FHNC, ab initio DFT,.....

• Extention to weakly bound systems : Complex scaling and complex shell model, Gamow shell model.

Progress in our QCD understanding of the NN force

- CEBAF 12 GeV upgrade: Explore the limits of our understanding of the atomic nuclei based on nucleonic and mesonic degrees of freedom
 - Experimental plans aim at identifying and exploring the transition from the nucleon/meson description of nuclei to the underlying quark and gluon description.
 - 2 Test the short-range behavior of the NN interaction via deep inelastic scattering
- Effective field theory has made progress in constructing NN and NNN forces from the underlying symmetries of QCD
- Three-body forces emerge naturally and have explicit expressions at every order in the chiral expansion.

(□) (□) (□) (□) (□)

 Recent progress in Lattice QCD may hold great promise for the construction/paremetrization of the nucleon-nucleon interaction.

Progress in our QCD understanding of the NN force

- CEBAF 12 GeV upgrade: Explore the limits of our understanding of the atomic nuclei based on nucleonic and mesonic degrees of freedom
 - Experimental plans aim at identifying and exploring the transition from the nucleon/meson description of nuclei to the underlying quark and gluon description.
 - 2 Test the short-range behavior of the NN interaction via deep inelastic scattering
- Effective field theory has made progress in constructing NN and NNN forces from the underlying symmetries of QCD
- Three-body forces emerge naturally and have explicit expressions at every order in the chiral expansion.

 Recent progress in Lattice QCD may hold great promise for the construction/paremetrization of the nucleon-nucleon interaction.

Lattice QCD, Ishii et al, nucl-th/0611096, PRL 2007

The nucleon-nucleon interaction, Phenomenology vs Lattice calculations.

< (T) >

2N and 3N Interactions from Effective Field Theory

Nucleons and Pions as effective degrees of freedom only. Chiral perturbation theory for different orders (ν) of the expansion in terms of momentum/pion mass.

Chiral order	2N force	3N force	4N force
$\nu = 0$ $\nu = 1$ $\nu = 2$ $\nu = 3$ $\nu = 4$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- - $V_{2\pi} + V_{1\pi, \text{ cont}} + V_{\text{cont}}$ work in progress	- - - work in progress

Three-Nucleon Force at chiral order $\nu = 3$.

Two and three-body Correlations in Nuclei RPMBT14 16-20 July 2007

・ロト ・日ト ・ヨト ・ヨト

Effective Hamiltonian and Model Spaces

$$M \le 2n + l \approx 4 - 20$$

Two-Body Effective Hamiltonian for Large Space

Need to renormalize short-range behavior of V:

$$G_{ijkl} = V_{ijkl} + \sum_{mn \in Q} V_{ijmn} \frac{Q}{\omega - \varepsilon_m - \varepsilon_n} G_{mnkl}$$

- Harmonic oscillator basis.
- Note well energy ω dependence!

・ロト ・日子・ ・日下・ ・

• 2N interactions + Coulomb. Compute via matrix inversion.

Effective Hamiltonian for Large Spaces II

$$M \le 2n + l \approx 200$$
$$h \le 2n + l \approx 4 - 200$$

Similarity Transformation

Diagonalize

$$H_2^{\Omega} = \frac{\vec{p}_1^2 + \vec{p}_2^2}{2m} + \frac{1}{2}m\Omega^2(\vec{r}_1^2 + \vec{r}_2^2)$$

$$+V(\vec{r}_1-\vec{r}_2)-rac{m\Omega^2}{2A}(\vec{r}_1-\vec{r}_2)^2$$

- Use similarity-transformation to obtain $V_{\rm eff}$ for smaller space.
- No energy dependence! HO basis.

(□) (□) (Ξ) (Ξ)

Algorithm

Start with the two-body equation

$$H_2^{\Omega} \equiv H_{02}^{\Omega} + V_2^{\Omega} = \frac{\vec{p}_1^2 + \vec{p}_2^2}{2m} + \frac{1}{2}m\Omega^2(\vec{r}_1^2 + \vec{r}_2^2) + V(\vec{r}_1 - \vec{r}_2) - \frac{m\Omega^2}{2A}(\vec{r}_1 - \vec{r}_2)^2$$

- Define A for the specific nucleus
- Define a large space in terms of the harmonic oscillator shells $2n + l \sim 200 300$

(□) (□) (Ξ) (Ξ)

- Diagonalize exactly the two-body problem.
- Transform to a smaller space with $2n + l \sim 4 20$ via adequate similarity transformations

$V_{\text{low}-k}$ in large spaces

- Diagonalize the two-body Schroedinger equation in momentum space for all momenta
- Choose a cutoff which defines the model space in terms of relative momenta
- Use exact eigenvalues and momenta to perform a similarity transformation
- Obtain effective interaction in relative momenta
- Integrate to get harmonic oscillator matrix elements for relative quantum numbers
- Transform to lab frame

Potential drawback: no connection with harmonic oscillator cutoff. Interaction stays the same irrespective of the number of shells.

All two-body interactions need to be accompanied by at least a three-body interaction.

(日) (종) (종) (종)

What do we want?

- Want a many-body formalism which allows one to include in a systematic way various many-body correlations.
- These correlations should be summed to infinite order (want a size-extensive theory)
- Should be able to describe both bound and weakly bound systems.
- Complement the shell model for heavier systems and extract better effective interactions for the nuclear shell model

(□) (□) (Ξ) (Ξ)

Strategy: combine coupled cluster with shell-model (CI)

Why Coupled-Cluster theory?

Advantages

- Fully microscopic. Only linked diagrams enter, size extensive
- Can be improved upon systematically, e.g., by inclusion of three-body interactions and more complicated correlations. To be contrasted to many-body perturbation theory.
- Allows for description of both closed-shell systems and valence systems
- Derivation of effective two and three-body interactions for the shell model
- Amenable to parallel computing
- Huge development in Quantum Chemistry. Exploit this for the nuclear many-body problem.

(□) (□) (Ξ) (Ξ)

More on Coupled Cluster

More advantages

 Can be used to generate excited spectra for nuclei like ¹⁶O or ⁴⁰Ca with many shells. Hard for the shell model to go beyond one major shell. Huge dimensionalities in shell-model (CI) calcs

System	4 shells	7 shells		
⁴ He	4E4	9E6		
⁸ B	4E8	5E13		
¹² C	6E11	4E19		
¹⁶ O	3E14	9E24		

Shell-model (CI) codes can today reach dimensionalities of $d \sim 10^{10}$ basis states.

• Can include complex effective interactions

Coupled Cluster with Triple Correlations

Correlated many-body wave function is given by

 $\mid\Psi
angle=\exp\left(\mathcal{T}
ight)\mid\Phi_{0}
angle\;,$

with the reference Slater determinant as $| \Phi_0 \rangle$ and the correlation operator as $T=T_1+T_2+T_3+\dots+T_A$

$$T_1 = \sum_{i < arepsilon_f, a > arepsilon_f} t^a_i a^+_a a_i$$

for single excitations (S, 1p-1h)

$$T_2 = rac{1}{4} \sum_{i,j < arepsilon_f; ab > arepsilon_f} t^{ab}_{ij} a^+_a a^+_b a_j a_j$$

for double excitations (D, 2p-2h) and

$$T_3 = \frac{1}{36} \sum_{i,jk < \varepsilon_f; abc > \varepsilon_f} t_{ijk}^{abc} a_a^+ a_b^+ a_c^+ a_k a_j a_i$$

(日) (四) (王) (王) (王)

for triple excitations (T, 3p-3h)

Coupled Cluster equations

Define:

$$f = \sum_{pq} f_{pq} \{ a_p^+ a_q \}$$

with f_{pq} the Fock matrix elements

$$W = rac{1}{4} \sum_{pqrs} \langle pq || rs
angle \{ a_p^+ a_q^+ a_r a_s \}$$

where $\langle pq || rs \rangle$ are anti-symmetrized two-body matrix elements. Normal-order creation and annihilation operators.

(日) (四) (王) (王) (王)

Coupled Cluster, CCSDT level

The extention to triples gives the following equations for the amplitudes with 1p-1h $\langle \Phi_i^a | [fT_1 + f(T_2 + 1/2T_1^2) + WT_1 + W(T_2 + 1/2T_1^2) + W(T_1T_2 + 1/6T_1^3 + T_3)]_C | \Phi \rangle = 0,$ and with 2p-2h $\langle \Phi_{ij}^{ab} | [fT_1 + f(T_3 + T_2T_1) + W + WT_1 + W(T_2 + 1/2T_1^2) + W(T_1T_2 + 1/6T_1^3 + T_3) + W(T_1T_3 + 1/2T_2^2 + 1/2T_2T_1^2 + 1/24T_1^4)]_C | \Phi \rangle = 0.$ and with 3p-3h $\langle \Phi_{ijk}^{abc} | [fT_3 + f(T_3T_1 + 1/2T_2^2) + WT_2 + W(T_3 + T_1T_2) + W(1/2T_2 + T_3T_11/2T_1^2 + T_1) + W(T_1T_2 + T_1T_2) + W(1/2T_2 + T_1T_2) + W(1/2T$

$$+W(T_2T_3+1/2T_2^2T_1+1/2T_3T_1^2+1/6T_2T_1^3)]_C|\Phi\rangle=0.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Coupled Cluster

When the equations have been solved we have defined the amplitudes t...

$$T_1 = \sum_{i < \varepsilon_f, a > \varepsilon_f} t_i^a a_a^+ a_i$$

$$T_2 = \frac{1}{4} \sum_{i,j < \varepsilon_f; ab > \varepsilon_f} t_{ij}^{ab} a_a^+ a_b^+ a_j a_i$$

$$T_{3} = \frac{1}{36} \sum_{i,jk < \varepsilon_{f}; abc > \varepsilon_{f}} t^{abc}_{ijk} a^{+}_{a} a^{+}_{b} a^{+}_{c} a_{k} a_{j} a_{i}$$

and can then extract effective interactions. Different approximations to the solution of the triples equations yield different CCSDT approximations. CCSD scales as $n_o^2 n_u^4$ while full CCSDT scales as $n_o^3 n_u^5$, with n_o the number of occupied orbits and n_u the number of unoccupied.

(□) (□) (Ξ) (Ξ)

Acronyms, summary

- CCSD: coupled cluster with single and double excitations only
- CCSD(T) : CCSD energy is augmented by a perturbative treatment of triple excitation effects, normally reliable
- CCSDT-1: skip WT₁T₃ in 2p-2h part and keep only fT₃ and WT₂ in 3p-3h
- CCSDT-2: full 2p-2h and 3p-3h as in CCSDT-1
- **O** CCSDT-3 : All terms in 3p-3h except the fT_3 term.
- O CCSDT: all terms

Excellent review by Bartlett and Musial in Rev. Mod. Phys. 79, 291 (2007).

Benchmarks, ⁴He

$V_{\text{low}-k}$

- $V_{{\rm low}-k}$ with $\Lambda=1.9$ fm⁻¹ and $\hbar\omega=14$ MeV
- Argonne V₁₈ interaction
- Comparison with FY calculations, agreement with FY

within 10 keV (FY error 50 keV))

(□) (□) (Ξ) (Ξ)

르

Benchmarks, ¹⁶O

$\hbar\omega$ dependence

- $V_{\text{low}-k}$
- Argonne V₁₈ interaction
- With increasing number of shells 2n + I ħω dependence disappears.

(□) (□) (Ξ) (Ξ)

Benchmarks, ¹⁶O

Extrapolation

- $V_{{\rm low}-k}$ with $\Lambda=1.9$ fm⁻¹ and $\hbar\omega=14$ MeV
- Argonne V₁₈ interaction
- Note overbinding, need to accompany a two-body interaction with three-body interaction

(I) (I) (I) (I)

르

Benchmarks, ⁴⁰Ca

Extrapolation

- $V_{\text{low}-k}$ with $\Lambda = 1.9$ fm⁻¹ and $\hbar \omega = 20$ MeV. Argonne V_{18} .
- Note considerable overbinding, need to accompany a two-body interaction with three-body interaction. Different NN forces need different NNN forces. Largest space 10⁶⁶.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Helium Isotopes

Weakly bound and unbound nuclei – requires continuum states: complex coupled-clusters [Hagen et al, PRL (2006)]

(日) (四) (三) (三)

Coupled Cluster, Complex Scaling and He Isotopes

	³ He		⁴ He		⁵ He		⁶ He	
lj	Re[E]	Im[E]	Re[E]	Im[E]	Re[E]	Im[E]	Re[E]	Im[E]
s-p	-4.94	0.00	-24.97	0.00	-20.08	-0.54	-19.03	-0.18
s-d	-6.42	0.00	-26.58	0.00	-23.56	-0.22	-23.26	-0.09
s-f	-6.81	0.00	-27.27	0.00	-24.56	-0.17	-24.69	-0.07
s-g	-6.91	0.00	-27.35	0.00	-24.87	-0.16	-25.16	-0.06
Expt.	-7.72	0.00	-28.30	0.00	-27.41	-0.33(2)	-29.27	0.00
CCSD calculation of the ³⁻⁶ He ground states with the low-momentum N ³ LO								

nucleon-nucleon interaction for increasing number partial waves. The energies E are given in MeV for both real and imaginary parts. Reference state defined so that total spin projection is maximal. Orbits with largest m_i filled first.

Coupled Cluster, Complex Scaling and He Isotopes

	⁷ He		⁸ He		⁹ He		¹⁰ He	
lj	Re[E]	Im[E]	Re[E]	Im[E]	Re[E]	Im[E]	Re[E]	Im[E]
<u>s</u> – p	-17.02	-0.24	-16.97	-0.00	-15.28	-0.40	-13.82	-0.12
s-d	-22.19	-0.12	-22.91	-0.00	-21.34	-0.15	-20.60	-0.02
s-f	-24.13	-0.11	-25.28	-0.00	-23.96	-0.06	-23.72	-0.00
s-g	-24.83	-0.09	-26.26	-0.00	-25.09	-0.03	-24.77	-0.00
Expt.	-28.83	-0.08(2)	-31.41	0.00	-30.26	-0.05(3)	-30.34	0.09(6)
CCSD calculation of the $^{7-10}$ He ground states. 850 single-particle orbitals,								
5s5p5d4f44h4i proton orbitals and $20s20p5d4f44h4i$ neutron orbitals. For ¹⁰ this is								

approximately 10²² basic states.

$\hbar\omega$ dependence of the real part of the $^5{\rm He}$ ground state energy

< (T) >

$\hbar\omega$ dependence of the imaginary part of the ⁵He ground state energy

< (T) >

≣ ▶

⁴He and three-body, preliminary

Scheme

• V_{low-k} Hamiltonian based on V_{18} interaction with (full) three-body interaction added and without (dashed).

•
$$V_{\text{low}-k}$$
 with $\Lambda = 1.9$ fm⁻¹.

• Only T = 1/2 and J = 1/2 part of three-body interaction.

<ロ> (四) (四) (三) (三)

⁴He and three-body

< (T) >

≣⇒

(日) (日) (日) (日) (日)

Summary: much Work in Progress

- Three-body forces included in CC calculations, give density dependent two-body forces.
- Can now extract effective interactions for the nuclear shell-model, with and without three-body forces.
- Inclusion of continuum effects, complex coupled-cluster code and complex effective interactions
- Three-body forces included in CC calculations, give density dependent two-body forces.
- Current interest: Helium and Oxygen isotopes, especially from ²⁰O till ²⁸O. several experiments at for example RIKEN and NSCL-MSU, ²³O, ²⁴O and ²⁵O.
- Ground state properties of closed-shell nuclei, from ⁴He to ²⁰⁸Pb: Now ⁵⁶Ni.
- How much due to three-body forces and how much due to coupling to continuum with only two-body?
- Can we understand how shells evolve? Is it due to three-body effects or continuum effects, or something else?

Selected Articles

- 📎 Kowalski *et al*, Phys. Rev. Lett. **92**, 132501 (2004).
- 📎 Wloch *et al*, Phys. Rev. Lett. **94**, 132501 (2005).

📎 Hagen, Hjorth-Jensen, and Michel, Phys. Rev. C 73, 064307 (2006), complex scaling

📎 Hagen *et al*, nucl-th/0610072, Phys. Lett. B, in press, complex scaling

Network Market & State three-body interaction

No. 127 No. 12. 12. The set of th benchmark calculations

(ロ) (同) (E) (E)

Summary Further Reading People

・ロト ・日ト ・ヨト ・ヨト

크

ORNL-OSLO-Michigan Many-Body project

ORNL

David Dean, Gaute Hagen, Thomas Papenbrock and Achim Schwenk (TRIUMF)

Oslo

Elise Bergli, Morten Hjorth-Jensen, Maxim Kartamychev

Michigan, MSU and CMU

Jeff Grour, Mihai Horoi, Piotr Piecuch, and Marta Wloch