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Electronic structure QMC and the fixed-node 
approximation: the key (only) fundamental

approximation 
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f R , t =∫G*R , R ' , f R ' , t d R '

               

           
           QMC:                                                             : interacting electrons+ions

           Recast as diffusion MC (DMC)
           with importance sampling: 

           Fermion sign problem ->  Fixed-node approximation:                   
           (continuous space, boundary replaces antisymmetry)   

            
             Fermion node:                                         (3N-1)-dimen. hypersurface 
                  
                        
                         Exact node       ->     exact energy in polynomial time

      

f R , t 0

f R , t∞=Trial Rground R 

r1 , r2 , ... , rN=0

 The exact node, in general:  an intractable multi-D problem ??? (Will see...)
 
                   Anyway, how well does the FN DMC  method work ?

0=lim∞ exp −HT H



Example of a fixed-node DMC calculation of a difficult 
system: FeO solid 

 “Plain vanilla” FN DMC -> 90-95 % of Ecorr

- FeO ground state:  B1 structure, antiferromagnetic insulator
- DFT: wrong structure (B8) and wrong electronic state (metal)

FNDMC:   -  Ne-core relativistic pseudopotentials for Fe
                 -  16 FeO supercell, 352 valence e-
                 -  GGA/HF orbs, 

 Cohesive energy[eV]:
   LDA          HF           B3LYP           DMC            Exper.
   11.7          5.9              7.9               9.47(4)          ~9.7

 Gap [eV]:
   LDA          HF            B3LYP          DMC            Exper.
    0              10.2            3.4               2.8(4)           ~ 2.2 

 DMC transition B1->B8 pressure 70(5) GPa, Exper. ~70-100GPa !

T=det  []det  []exp [∑
i , j , I

Ucorr r ij , r iI , r jI]



Beyond the fixed-node approximation:
How much do we know about fermion nodes ?
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r1 , r2 , ... , rN=0                                         ->  (DN-1)-dim. smooth manifold divides the space
            into cells/domains with constant wf. sign (“+”  or  “- “)

            - 1D systems, ground state node known exactly: N! domains
            - 3D, special cases of 2e,3e atoms known exactly: 2 domains, eg,

              He atom triplet 3S[1s2s]: the exact node is 5D hyperboloid in 6D 
                             quartet 4S[2p3]: the exact node is  

          Tiling property for nondegenerate ground states (Ceperley '92):
           Let
           Can show that
  
             However, it does not say how many domains are there ??? 
             But that is the key question: the nodal topology!

G R0nodal cell /domain around R0 Pparticle permutation
∑P

P [G R0] = whole configuration space

r1⋅r2×r3=0



Focus on fermion nodes:
some history in mathematics and ...

what do we want to know ?
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           Interest in nodes of eigenstates goes back to D. Hilbert.
           Later Courant proved some properties of one-particle eigenstates 
           (n-th excited state has n or less nodal domains).
           However, that is too weak for what we need for many-body systems:  
           
           
                       -  nodal topologies, ie, number of nodal cells/domains
                       -  accurate nodal shapes ?  how complicated are they ?
                       -  nodes <-> types of wavefunctions ?
                       -  nodes <-> physical effects ? 
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 Conjecture: for d >1 ground states have only two 
nodal cells, one “+” and one “-”

  Numerical proof: 200 noninteracting fermions in 2/3D (Ceperley '92):

  For a given           find a point such that triple exchanges connect all 
  the particles into a single cluster: then there are only two nodal cells

                           

               +    _

  (Why ? Connected cluster of triple exchanges exhausts all even/odd 
               permutations + tiling property -> no space left)

                                     rN

    r1    

             r2

           All-particle
      configuration 
                   space

R 

 Conjecture unproven even for noninteracting particles!!! 
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Skecth of a proof of two nodal cells for spin-polarized 
noninteracting 2D harmonic fermions of any size:

Step 1 -> Wavefunction factorization

=M−11,. .. , NM / I1
∏i j

i , j∈I1 y j−y i∏1k≤M
k−1

nk

1 ... M−1 M

M 1,. . , NM=Cgauss det [1, x , y , x2 , xy , y2 , ...]=

Place fermions on a Pascal-like triangle 

     lines ->                               fermions (closed shell)

Wavefunction factorizes by “lines of particles”:

y

1

3

2

NM=M1M2/2M

   lines coords

Factorizable along vertical, horizontal or diagonal lines, recursive. 

x

   particle coords
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Explicit proof of two nodal cells for spin-polarized 
harmonic fermions: Step  2  -> Induction 

Therefore all particles connected, any size. Q.E.D.

assume
particles
connected 
by exchanges

1

3

2

NM
NM1

1

3

2

1

3

2

MM1 particles
connected 

“lines”
factorized
    out 
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The key points of the proof generalize to other 
paradigmatic models and arbitrary d>1  

True for any model which transforms to homog. polynomials!

- fermions in a periodic box
   2D, 3D

- fermions on a sphere surface   

- fermions in a box
       
   homeomorphic variable map:  

Works for any d>1: factorization along lines, planes, hyperplanes!

nm x , y=sin xsin yUn−1pUm−1q

Y lm  ,=cosn sineim

p=cosx , q=cosy  pm qn

nm x , y=ei nxmy=zn wm
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Two nodal cells theorem: generic (and fundamental) 
property of fermionic ground states of  many models

Two nodal cells theorem. Consider a spin-polarized system 
with a closed-shell ground state given by a Slater determinant 
times an arbitrary prefactor (which does not affect the nodes)

Let the Slater matrix elements be monomials             
 of positions or their homeomorphic maps in d>1. 

Then the wavefunction has only two nodal cells.

Can be generalized to some open shells, to nonpolynomial 
cases such as HF wavefunctions of atomic states, etc.  

exact=C 1,. .. , N det {i  j}
xi

n yi
m zi

l ...
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For noninteracting/HF systems adding another spin 
channel or imposing additional symmetries generate 

more nodal cells

 Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
        ->    product of two independent Slater determinants

- in general, imposing symmetries generates more nodal cells:

  the lowest quartet of S symmetry 4S(1s2s3s) has six nodal cells 

         What happens when interactions are switched on ?

        “Nodal/topological degeneracy” is lifted and multiple
              nodal cells fuse into the minimal two again!

    First time showed on the case of Be atom, Bressanini etal '03
 

HF=det  { }det  {}
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Sketch the proof idea on a singlet of interacting 
harmonic fermions using the BCS wave function

Example:  6 harmonic 2D fermions in the singlet ground state.
Rotation by      exchanges particles in 
each spin channel: positioned on HF node

            
 

BCS pair orbital -> add correlations: 

virtuals from the first unoccupied subshell

BCS wavefunction is nonvanishing for arbitrary weak interaction!

                                                      
 

BCS
  i , j=HF

  i , jcorr
  i , j

BCS=det {BCS
  i , j}= ra rb cos [2 ra rb cos 2−ra

2−rb
2 ]≠0



HF=det  [n i]det  [n  j]=

=det [∑n

N
n
 in

  j]=det [HF
  i , j]=0
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Effect of correlation in homogeneous electron gas: 
singlet pair of e- winds around the box without 

crossing the node

r i =r i5 offset , i=1,. .. ,5

Correl.
    

            HF

HF crosses the node multiple times, BCS does not (supercond.) 

Wavefunction along the winding
                      path 
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The same is true for the nodes of 
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

fix            ->  nodes/cells  in the       subspace

High (classical) temperature: 
 
enables to prove that R and R' subspaces have only two nodal
cells.  Stunning: sum over the whole spectrum!!!
L.M. PRL, 96, 240402; cond-mat/0605550

The next problem: more efficient description of nodal shapes. 
Calls for better description of correlation -> pfaffians ...
   

R , R ' ,=CN det {exp [−r i−r ' j
2 /2]}

R , R ' ,=∑
exp [−E]∗RR '

R ' , R
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Let us recall what is pfaffian: signed sum of all distinct 
pair partitions (Pfaff, Cayley ~ 1850)

  Example: pfaffian of a skew-symmetric matrix 

       
Signs:         +                                   -                                     +

           1    2    3    4                 1    2     3     4                1     2     3      4

pf [a ij]=∑P
−1P a i1 j1

...a iN jN
, ik jk , k=1,. .. , N

pf [ 0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0
]=a12 a34−a13 a24a14 a23
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Relations of pfaffians and determinants
Pfaffian is easy to evaluate in O(n3) time 

● For any square matrix B (nxn)

● For any skew-symmetric matrix A (2nx2n) 
 

● Any determinant can be written as pfaffian but not vice versa: 
  pfaffian is more general, determinant is a special case

Algebra similar to determinants: pfaffian can be expanded in 
minors, evaluated by Gauss-like elimination directly, etc.

det A =[pf A ] 2

det B=−1n n−1/2 pf [ 0 B
−BT 0 ]



Lubos_Mitas@ncsu.edu

Pfaffian is useful:
the simplest antisymmetric wavefunction constructed 

from a pair spinorbital
 

Pair orbital + antisymmetry -> pfaffian*

 

 

           symmetric/singlet            antisymmetric/triplet

               * L'Huillier et al, ~ '89 (and others before)

xi , x j=
  r i , r j − 

  r i , r j 
  r i , r j 

  r i , r j  

PF=A [x1 , x2x3 , x4...]=pf [x i , x j] i , j=1,. .. ,2 N
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Pfaffian wavefunctions with both singlet and triplet 
pairs (beyond BCS!) -> all spin states treated 

consistently: simple, elegant

   

-  pairing orbitals expanded in one-particle basis 
 

 
- unpaired        

 - expansion coefficients and the Jastrow correlation optimized 
   (M. Bajdich, L.M. et al, PRL 96, 130201 (2006))

PF=pf [ 
    

− T   

−T −T 0 ]× exp [Ucorr ]

i , j=∑
b[h ih j−h ih j]

i , j=∑≥
a[h ih jh ih j]

 i=∑
c h i
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 DMC correlation energies of atoms, dimers  
Pfaffians: more accurate and systematic than HF 

while scalable (unlike CI)
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Expansions in many pfaffians for first row atoms: 
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs CI nodes

                                           n=   # of pfs/dets

WF                         n          C           n          N          n            O      

DMC/MPF              3        98.9         5        98.4       11        97.2

DMC/CI                 98       99.3        85       98.9     136        98.4
   
- further generalizations: pairing with backflow coordinates,
  independent pairs, etc (M. Bajdich et al, PRL 96, 130201 (2006))
 
                Pfaffians describe nodes more efficiently
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Nodes of different WFs (%E_corr in DMC): 
oxygen atom wavefunction scanned by 2e- singlet 

(projection into 3D -> node subset)
    HF (94.0(2)%)        MPF (97.4(1)%)   CI (99.8(3)%)
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Nodal topology change from correlation: nitrogen 
dimer

  

  

 
   

          
             
             HF node                                            Correlated node
              4 cells                                                      2 cells

x ,y planar like surfaces

{g ,u ,g}∪{x ,y }distorted planar surfaces
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Nodes in quantum Hall states

        with broken time-reversal invariance -> inherently complex 
 wavefunction -> define the nodes for real and imaginary parts 
 (or, in special cases, phase times a real ) 

- use exact adiabatic mapping to “1D”-like model (Bergholtz et al,
  Horsdal et al) -> enough to understand that the nodes of both 
  real and imaginary parts are essentially 1D (LLL integer QHE,
  Laughlin states)

- easy to see on the simplest case of three electrons: wavefunction 
  is a symmetric phase times 1D w.f. depending on radii only:

                                                            
triple exchange -> basically a rotation of three particle on a circle 

z1, z2, z3=exp  i q∑
i

i1 D
real r1 , r2, r3; ∣z i∣=r i

H
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Summary

- explicit proof  of two nodal cells for d>1 and arbitrary size 
  with rather general conditions: fundamental property of closed-
  shell fermionic ground states

- pfaffian: compact wavefunction, has the right topology; still,
  nodes more subtle: ~ 5 % of correlation energy; 

- fermion nodes: another example of importance of quantum
  geometry and topology for electronic structure
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What if matrix elements are not monomials ?
 Atomic states (different radial factors for subshells):
Proof of two cells for nonint. and HF wavefunctions

- position subshells of electrons onto spherical surfaces:

- exchanges between the subshells: simple numerical proof up
  to size 15S(1s2s2p33s3p33d5) and beyond (n=4 subshell)

                                                                    
                                                                        123 -> 312
                                                                        326 -> 632
                                                                              . . . 
                                                                        
  

             
      

HF=1s2 s2p33s3p3 d5 ....
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Observations from comparison  of HF and “exact” (CI) 
nodes

- the two nodal cells for
  Coulomb interactions as well
 
                                                                 HF
- the nodal openings have very           
  fine structure: ~ 5% of E_corr

-
- although topologically incorrect, 
  away from openings the HF nodes     CI
  unexpectedly close to exact



Lubos_Mitas@ncsu.edu

Two nodal cells: generic property, possible exceptions
The exact shape of the node ?

Topology of nodes for closed-shell gr. states is  surprisingly 
simple:

   The ground state node bisects the configuration space
   (the most favorable way to satisfy the antisymmetry)

Possible exceptions/caveats:
                       - nonlocal or singular interactions 
                       - imposing symmetries or boundaries 
                       - degeneracies
      
The next problem: the exact nodal shape is difficult to get!
The key: better description of correlations -> pfaffians
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Correlation in the BCS wavefunction is enough to fuse 
the noninteracting four cells into the minimal two 

Arbitrary size: position
the particles on HF node
(wf. is rotationally invariant)

HF pairing (sum over occupieds, linear dependence in Sl. dets)

   
BCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)

                                                      
 

i , j=HF i , jcorr i , j

HF=det [HF i , j]=det [∑n
n in  j]=det [n i]det [n  j]=0

BCS=det [BCSi , j]≠det [nm i]det [nm  j]  BCS≠0


