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Electronic structure QMC and the fixed-node
approximation: the key (only) fundamental
approximation

QMC: Yo=lim___ exp(—tH)y; H : interacting electrons+ions

Recast as diffusion MC (DMC) f(R,t+7) zf G (R,R',7)f(R",t)dR"
with importance sampling: f(R,t—> )=y (R)$gomna(R)

Fermion sign problem -> Fixed-node approximation: f(R,t)>0
(continuous space, boundary replaces antisymmetry)

[Fermion node: qs(rl,rz,...,rN):O (3N-1)-dimen. hypersurface j

| Exact node ->  exact energy in polynomial time J

The exact node, in general: an intractable multi-D problem 77?7 (Will see...)

Anyway, how well does the FN DMC method work ?
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Example of a fixed-node DMC calculation of a difficult
system: FeO solid
“Plain vanilla” FN DMC -> 90-95 % of Ecorr

- FeO ground state: B1 structure, antiferromagnetic insulator
- DFT: wrong structure (B8) and wrong electronic state (metal)

FNDMC: - Ne-core relativistic pseudopotentials for Fe
- 16 FeO supercell, 352 valence e-
- GGA/HF orbs, y,=det'[¢,|det’[dylexp[ 2 Ugy, (ry,ry,1;)]
I,

Cohesive energyl[eVl]:

LDA HF B3LYP DMC Exper.

11.7 5.9 7.9 9.47(4) ~9.7
Gap [eV]:

LDA HF B3LYP DMC Exper.

0 10.2 3.4 2.8(4) ~2.2

DMC transition B1->B8 pressure 70(5) GPa, Exper. ~70-100GPa !



Beyond the fixed-node approximation:
How much do we know about fermion nodes ?

$(ry,ry,..,ry)=0-> (DN-1)-dim. smooth manifold divides the space
into cells/domains with constant wf. sign (“+” or “- )

- 1D systems, ground state node known exactly: N! domains
- 3D, special cases of 2e,3e atoms known exactly: 2 domains, eg,

He atom triplet 3S[1s2s]: the exact node is 5D hyperboloid in 6D
quartet 4S[2p3]: the exact node is r-(r,Xr,)=0

Tiling property for nondegenerate ground states (Ceperley '92):
Let G(R,)— nodal cell/domainaround R, P — particle permutation
Can show that D, P[G(R;)] = wholeconfigurationspace
4 )
However, it does not say how many domains are there 27?7
But that is the key question: the nodal topology!

\. J
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Focus on fermion nodes:
some history in mathematics and ...
what do we want to know ?

Interest in nodes of eigenstates goes back to D. Hilbert.

Later Courant proved some properties of one-particle eigenstates
(n-th excited state has n or less nodal domains).

However, that is too weak for what we need for many-body systems:

4 )

- nodal topologies, ie, number of nodal cells/domains
- accurate nodal shapes ? how complicated are they ?
- nodes <-> types of wavefunctions ?

- nodes <-> physical effects ?
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Conjecture: for d >1 ground states have only two

nodal cells, one “+” and one “-

Numerical proof: 200 noninteracting fermions in 2/3D (Ceperley '92):

For a given ¢(R) find a point such that triple exchanges connect all
the particles into a single cluster: then there are only two nodal cells

All-particle 'N
configuration ri

space

2

(Why ? Connected cluster of triple exchanges exhausts all even/odd
permutations + tiling property -> no space left)

[ Conjecture unproven even for noninteracting particles!!! J
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Skecth of a proof of two nodal cells for spin-polarized
noninteracting 2D harmonic fermions of any size:
Step 1 -> Wavefunction factorization

Place fermions on a Pascal-like triangle y4

M lines -> N,,=(M+1)(M+2)/2 fermions (closed shell)

Wavefunction factorizes by “lines of particles”:

(IJM(]-’"’NM):Cgaussdet[liX1y’X21Xy’y21'"]: +- -X>
El EM—l EM

|,j€|§1

=¥u-t(Lo NM/I‘fl) 1_[i<j <yj;yi)H1<k<M (&—E)"

_ lines coords
particle coords

Factorizable along vertical, horizontal or diagonal lines, recursive.
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Explicit proof of two nodal cells for spin-polarized
harmonic fermions: Step 2 -> Induction

Ny
e
4 M-M+1 “lines” particles
f —_— factorized - connected
assume out . /
particles
connected \'(‘)_._"

by exchanges

0099

Therefore all particles connected, any size. Q.E.D.
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The key points of the proof generalize to other
paradigmatic models and arbitrary d>1

(True for any model which transforms to homog. polynomials! )

- fermions in a periodic box ¢ __(x,y)=€"™*"™=2"w"

2D, 3D
- fermions on a sphere surface Y|m(9,¢)=(0039)n(8in9€i¢)m
- fermions in a box bu(X,Y)=8in(x)sin(y)U,_;(p)U,,,(q)

homeomorphic variable map: p=cos(x), g=cos(y) — p "

(Works for any d>1: factorization along lines, planes, hyperplanesa
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Two nodal cells theorem: generic (and fundamental)
property of fermionic ground states of many models

r w
Two nodal cells theorem. Consider a spin-polarized system

with a closed-shell ground state given by a Slater determinant
times an arbitrary prefactor (which does not affect the nodes)

Weaa=C(L,....N)det{¢;(j)] |

Let the Slater matrix elements be monomials X.'Y."Z
of positions or their homeomorphic maps in d>1.

. Then the wavefunction has only two nodal cells. )

Can be generalized to some open shells, to nonpolynomial
cases such as HF wavefunctions of atomic states, etc.
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For noninteracting/HF systems adding another spin
channel or imposing additional symmetries generate
more nodal cells

Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
-> product of two independent Slater determinants

(//HF:detT{qba}detl{qbﬁ}

- in general, imposing symmetries generates more nodal cells:
the lowest quartet of S symmetry 4S(15253s) has six nodal cells

What happens when interactions are switched on ?

“Nodal/topological degeneracy” is lifted and multiple
nodal cells fuse into the minimal two again!

\_

First time showed on the case of Be atom, Bressanini etal '03
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Sketch the proof idea on a singlet of interacting
harmonic fermions using the BCS wave function

Example: 6 harmonic 2D fermions in the singlet ground state.
Rotation by 1™ exchanges particles in .
each spin channel: positioned on HF node

—detT[ <'>]det¢[ <m=
ety vl |=det[ ¢l (i,])]=0 >0

BCS pair orbital -> add correlations:

becsli )=y 1)+ & b (1) :
"virtuals from the first unoccupied subshell

[ (//Bcs:det{d%t:s(i 7j)}:0‘rarbcos<¢>[2<rarbCOS((b))z—I‘z—ri];éO J
|

BCS wavefunction is nonvanishing for arbitrary weak interaction!
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Effect of correlation in homogeneous electron gas:
singlet pair of e- winds around the box without
crossing the node

Wavefunction along the winding

rt=r gl+offset, i=1..5 ~  path
oo i
Co——*;-—-—}':-‘,?—‘o
-
ol-iene : ................. 'r ........
i
®, 0
s i
& 0 g X

0
(Xy + Xg )/2
HF crosses the node multiple times, BCS does not (supercond.)
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The same is true for the nodes of
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

p(RR',B)=2. exp[—BE, |y, (R)y, (R
fix R',§ -> nodes/cells inthe R subspace

High (classical) temperature: p(R,R', 8)=C,det {exp[—(r,—r".)’/2 ]}

N
enables to prove that R and R' subspaces have only two nodal
cells. Stunning: sum over the whole spectrum!!!
kL.M. PRL, 96, 240402; cond-mat/0605550

J

4 \
The next problem: more efficient description of nodal shapes.

Calls for better description of correlation -> pfaffians ...
§ y
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Let us recall what is pfaffian: signed sum of all distinct
pair partitions (Pfaff, Cayley ~ 1850)

pf[aij]zzp(—1)Pai1jl...aiNjN, <jo k=1..,N

Example: pfaffian of a skew-symmetric matrix

0 dy, diz Ay
—dy, 0 dy; Ay

pf =d 8y~ Ay3ay, T A,y
—dj3 —dy 0 Ay,
__a14 —dy —dy O_
Signs: + - +
N S N N e~
1 2 3 4 1 2 3 4 1 2 3 4
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Relations of pfaffians and determinants
Pfaffian is easy to evaluate in O(n3) time

* For any square matrix B (nxn)

0 B

det (B)=(- >“”pf[ .

* For any skew-symmetric matrix A (2nx2n)

det(A)=[pf(A)]*

* Any determinant can be written as pfaffian but not vice versa:
pfaffian is more general, determinant is a special case

Algebra similar to determinants: pfaffian can be expanded in
minors, evaluated by Gauss-like elimination directly, etc.
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Pfaffian is useful:
the simplest antisymmetric wavefunction constructed
from a pair spinorbital

Pair orbital + antisymmetry -> pfaffian®
Wer=Ald (X1, %) P (X3, X,) .. |=PF [ (X, %) ] 1,]=1,...,2N
\

b (X, %)= (1, 1) (TL=LT) X (r,r ) () +X 7 (ry,r )LL) +X (1) (TL+11)

symmetric/singlet antisymmetric/triplet

* L'Huillier et al, ~ '89 (and others before)
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Pfaffian wavefunctions with both singlet and triplet
pairs (beyond BCS!) -> all spin states treated
consistently: simple, elegant

XTT (l)Tl (I/T
(,UpF:pf _(leT Xll (ljl >< eXp[UCOH]
_(IJTT _Llle O

- pairing orbitals expanded in one-particle basis
B(i,1)=2 Al (i) () +hy (i) h,(])]
X(i,1)=2,., eglhy i)y (1)=hy(i)h, ()]

- unpaired w(i)=Z(x c N (i)

- expansion coefficients and the Jastrow correlation optimized
(M. Bajdich, L.M. et al, PRL 96, 130201 (2006))
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DMC correlation energies of atoms, dimers
Pfaffians: more accurate and systematic than HF
while scalable (unlike ClI)

100}
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Expansions in many pfaffians for first row atoms:
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs Cl nodes

n= # of pfs/dets

WF n C n N n O
DMC/MPF 3 98.9 5 98.4 11 97.2
DMC/CI 98 99.3 85 98.9 136 98.4

- further generalizations: pairing with backflow coordinates,
independent pairs, etc (M. Bajdich et al, PRL 96, 130201 (2006))

[Pfaffians describe nodes more efficiently J
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Nodes of different WFs (%E_corr in DMC):
oxygen atom wavefunction scanned by 2e- singlet

(projection into 3D -> node subset)
HF (94.0(2)%) MPF (97.4(1)%) Cl1 (99.8(3)%)




Nodal topology change from correlation: nitrogen
dimer

T, 1, — planar likesurfaces

\0,,0,,04U{m,, 1, |- distorted planar surfaces

HF node Correlated node
4 cells 2 cells
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Nodes in quantum Hall states

H with broken time-reversal invariance -> inherently complex
wavefunction -> define the nodes for real and imaginary parts
(or, in special cases, phase times a real )

- use exact adiabatic mapping to “1D”-like model (Bergholtz et al,
Horsdal et al) -> enough to understand that the nodes of both
real and imaginary parts are essentially 1D (LLL integer QHE,
Laughlin states)

- easy to see on the simplest case of three electrons: wavefunction
is a symmetric phase times 1D w.f. depending on radii only:

(//(212223 =exp( lCIZﬁb. (lle [,0, rs);

triple exchange -> basically a rotation of three particle on a circle
Llubos Mitas@ncsu.edu

z|=r,



Summary

- explicit proof of two nodal cells for d>1 and arbitrary size
with rather general conditions: fundamental property of closed-
shell fermionic ground states

- pfaffian: compact wavefunction, has the right topology; still,
nodes more subtle: ~ 5 % of correlation energy;

- fermion nodes: another example of importance of quantum
geometry and topology for electronic structure
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What if matrix elements are not monomials ?
Atomic states (different radial factors for subshells):
Proof of two cells for nonint. and HF wavefunctions

- position subshells of electrons onto spherical surfaces:
Wie= W1V o0 Wagrig

- exchanges between the subshells: simple numerical proof up
to size 15S(1s2s2p33s3p33d>5) and beyond (n=4 subshell)

123 -> 312
326 -> 632
=2
0 ,
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Observations from comparison of HF and “exact” (Cl)
nodes

- the two nodal cells for
Coulomb interactions as well

- the nodal openings have very
fine structure: ~ 5% of E_corr

- although topologically incorrect,
away from openings the HF nodes CIi
unexpectedly close to exact
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Two nodal cells: generic property, possible exceptions
The exact shape of the node ?

Topology of nodes for closed-shell gr. states is surprisingly
simple:

r ™)
The ground state node bisects the configuration space
t (the most favorable way to satisfy the antisymmetry)

J

Possible exceptions/caveats:
- nonlocal or singular interactions
- imposing symmetries or boundaries
- degeneracies
4 “
The next problem: the exact nodal shape is difficult to get!
Ihe key: better description of correlations -> pfaffians

J
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Correlation in the BCS wavefunction is enough to fuse
the noninteracting four cells into the minimal two

Arbitrary size: position
the particles on HF node
(wf. is rotationally invariant)

HF pairing (sum over occupieds Iinear dependence in Sl. dets)
e =det pye(i,])|=det Z Wl det|y,(i)|det|y,(j)]=0

CBCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)}
(l)<| ’j>:¢HF<i 1j>+qbcorr<i ’J)

Wacs=det| dacs(i, )| det[w ()] det|(j)] = Wees#O
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