Quantum phase transitions on percolating lattices

Thomas Vojta

Department of Physics, University of Missouri-Rolla

- 1. Geometric percolation
- 2. Classical magnet on a percolating lattice
- 3. Quantum phase transitions and percolation
 - Transverse-field Ising magnet
 - Bilayer quantum Heisenberg magnet
 - Percolation and dissipation

Acknowledgements

currently at UMR

Jose Hoyos

Chetan Kotabage Man Young Lee

Shellie Huether Ryan Kinney Brett Sweeney

former group members

Mark Dickison (Boston U.) Bernard Fendler (Florida State U.) Rastko Sknepnek (Iowa State U.)

external collaboration

Ribhu Kaul (Harvard U.) Jörg Schmalian (Iowa State U.) Matthias Vojta (U. of Cologne)

Funding:

National Science Foundation Research Corporation University of Missouri Research Board

Geometric percolation

- regular (square or cubic) lattice
- sites are occupied at random site **empty** (vacancy) with probability psite **occupied** with probability 1 - p

Question: Do the occupied sites form a connected infinite spanning cluster?

- sharp **percolation threshold** at p_c
- $p > p_c$: only disconnected finite-size clusters length scale: connectedness length ξ_c
- $p = p_c$: ξ_c diverges, clusters on all scales, clusters are **fractals** with dimension $D_f < d$
- $p < p_c$: infinite cluster covers finite fraction P_{∞} of sites

Percolation as a critical phenomenon

- percolation can be understood as continuous phase transition
- geometric fluctuations take the role of usual thermal or quantum fluctuations
- concepts of scaling and critical exponents apply

number of sites in infinite cluster: $P_{\infty} \sim |p - p_c|^{\beta_c}$ connectedness length: $\xi_c \sim |p - p_c|^{-\nu_c}$ cluster size distribution: (number of clusters with s sites): $n_s(p) = s^{-\tau_c} f [(p - p_c) s^{\sigma_c}]$

scaling function f(x)

$$f(x) \sim \exp(-B_1 x^{1/\sigma_c}) \qquad (p > p_c) \\ f(x) = \text{const} \qquad (p = p_c) \\ f(x) \sim \exp[-(B_2 x^{1/\sigma_c})^{1-1/d}] \qquad (p < p_c)$$

exponents are known exactly in 2D, numerically in 3D

from Stauffer/Aharony

1. Geometric percolation

2. Classical magnet on a percolating lattice

- 3. Quantum phase transitions and percolation
 - Transverse-field Ising magnet
 - Bilayer quantum Heisenberg magnet
 - Percolation and dissipation

Classical diluted magnet

$$H = -J\sum_{\langle i,j\rangle} \epsilon_i \epsilon_j S_i S_j - h\sum_i \epsilon_i S_i$$

- S_i classical Ising or Heisenberg spin
- ϵ_i random variable, 0 with probability p, 1 with probability 1-p

Is a classical magnet on the critical percolation cluster ordered?

naive argument: fractal dimension $D_f > 1 \implies$ Ising magnet orders at low T

Wrong !!!

- critical percolation cluster contains red sites
- parts on both sides of red site can be flipped with **finite energy cost**
- fractal (mass) dimension D_f not sufficient to characterize magnetic order
- \Rightarrow no long-range order at any finite T, $T_c(p)$ vanishes at percolation threshold
- \Rightarrow phase diagram is of type (b)

1. Geometric percolation

2. Classical magnet on a percolating lattice

- 3. Quantum phase transitions and percolation
 - Transverse-field Ising magnet
 - Bilayer quantum Heisenberg magnet
 - Percolation and dissipation

Quantum phase transitions

occur at **zero temperature** as function of pressure, magnetic field, chemical composition, ...

driven by **quantum** rather than thermal fluctuations

Transverse-field Ising model

$$\hat{H} = -J \sum_{\langle i,j \rangle} \hat{S}_i^z \hat{S}_j^z - h_x \sum_i \hat{S}_i^x$$

transverse magnetic field induces spin flips via $\hat{S}^x = \hat{S}^+ + \hat{S}^-$

transverse field suppresses magnetic order

Classical partition function: statics and dynamics decouple $Z = \int dp dq \ e^{-\beta H(p,q)} = \int dp \ e^{-\beta T(p)} \int dq \ e^{-\beta U(q)} \sim \int dq \ e^{-\beta U(q)}$

Quantum partition function: statics and dynamics coupled $Z = \text{Tr}e^{-\beta \hat{H}} = \lim_{N \to \infty} (e^{-\beta \hat{T}/N} e^{-\beta \hat{U}/N})^N = \int D[q(\tau)] \ e^{S[q(\tau)]}$

imaginary time τ acts as additional dimension at T = 0, the extension in this direction becomes infinite

Caveats:

- mapping holds for thermodynamics only
- resulting classical system can be unusual and anisotropic ($z \neq 1$)
- extra complications with no classical counterpart may arise, e.g., Berry phases

Diluted transverse-field Ising model

$$H_I = -J \sum_{\langle i,j \rangle} \epsilon_i \epsilon_j \hat{S}_i^z \hat{S}_j^z - h_x \sum_i \epsilon_i \hat{S}_i^x - h_z \sum_i \epsilon_i \hat{S}_i^z ,$$

- first term: interaction between the z-components of the spins
- second term: transverse magnetic field, controls quantum fluctuations
- third term: external magnetic field in *z*-direction, conjugate to order parameter

Zero-temperature phase diagram as function of transverse field h_x and impurity concentration p?

Red sites versus red lines

- quantum fluctuations are less effective in destroying long-range order
- red sites \Rightarrow red lines, infinite at T = 0
- flipping cluster parts on both sides of red line requires **infinite energy**

Long-range order survives on the critical percolation cluster

(if quantum fluctuations are not too strong)

 \Rightarrow phase diagram is of type (c)

(confirmed by explicit results for quantum Ising and Heisenberg magnets and for quantum rotors)

Generic phase diagram of a diluted quantum magnet

Schematic phase diagram

p = impurity concentrationg = quantum fluctuation strengthT = temperature

(long-range order at T > 0 requires $d \ge 2$ for Ising and $d \ge 3$ for Heisenberg symmetry)

Two zero-temperature quantum phase transitions:

(a) generic quantum phase transition, driven by quantum fluctuations(b) percolation quantum phase transition, driven by geometry of the lattice

transitions separated by **multicritical point** at $(g^*, p_c, T = 0)$

Critical behavior of percolation quantum phase transition

To determine the **critical behavior** of the percolation quantum phase transition:

- first consider single percolation cluster,
- then combine cluster size distribution + free energy of single cluster

$$F_{\text{tot}} = \sum_{s} n_s (p - p_c) F_s$$

single percolation cluster of s sites

- for small h_x , all spins on the cluster are correlated but collectively fluctuate in time
- cluster of size *s* acts as **two-level system** with moment *s*
- energy gap (inverse susceptibility) of cluster depends exponentially on size s

$$\Delta \sim \chi_s^{-1} \sim h_x e^{-Bs} \qquad [B \sim \ln(J/h_x)]$$

Critical behavior: Results

 $|\xi \sim \xi_c \sim |p - p_c|^{-\nu_c}$

Static exponents are identical to classical lattice percolation exponents

- magnetization: long-range order on infinite cluster only $m \sim P_{\infty} \sim |p p_c|^{\beta_c}$
- correlation length: correlations cannot extend beyond cluster size

Exponents involving dynamics are nonclassical

(but nonetheless determined by the lattice percolation exponents only)

- correlation time: $\ln \xi_{\tau} \sim \ln(1/\Delta) \sim s \sim \xi^{D_f} \Rightarrow \text{activated scaling} \qquad \ln \xi_{\tau} \sim \xi^{D_f}$
- scaling form of the magnetization at the percolation transition (Senthil/Sachdev 96)

$$m(p - p_c, h_z) = b^{-\beta_c/\nu_c} m\left((p - p_c)b^{1/\nu_c}, \ln(h_z)b^{-D_f}\right)$$

- at the percolation threshold $p = p_c$: $m \sim [\ln(h_z)]^{2-\tau_c}$
- for $p \neq p_c$: power-law quantum Griffiths effects $m \sim h_z^{\zeta}$ with nonuniversal ζ

1. Geometric percolation

- 2. Classical magnet on a percolating lattice
- 3. Quantum phase transitions and percolation
 - Transverse-field Ising magnet
 - Bilayer quantum Heisenberg magnet
 - Percolation and dissipation

$$H = J_{\parallel} \sum_{\substack{\langle i,j \rangle \\ a=1,2}} \epsilon_i \epsilon_j \hat{\mathbf{S}}_{i,a} \cdot \hat{\mathbf{S}}_{j,a} + J_{\perp} \sum_i \epsilon_i \hat{\mathbf{S}}_{i,1} \cdot \hat{\mathbf{S}}_{i,2},$$

• $\hat{\mathbf{S}}_{j,a}$: quantum spin operator (S = 1/2) at site j, layer a

- first term: in-plane interaction, second term: inter-layer coupling
- ratio J_{\perp}/J_{\parallel} controls strength of **quantum** fluctuations

Phase diagram mapped out by Sandvik (2002) and Vajk and Greven (2002)

Nonlinear sigma model

bilayer antiferromagnet can be mapped to **quantum nonlinear sigma model** (NLSM)

$$\mathcal{A} = \int d\tau \sum_{\langle ij \rangle} J\epsilon_i \epsilon_j \mathbf{S}_i(\tau) \cdot \mathbf{S}_j(\tau) + \frac{T}{g} \sum_i \sum_n \epsilon_i |\omega_n|^{2/z_0} \mathbf{S}_i(\omega_n) \mathbf{S}_i(-\omega_n)$$

- $\mathbf{S}_i(\tau)$: N-component unit vector at site i and imaginary time τ
- $\epsilon_i = 0, 1$: random variable describing site dilution
- $\bullet~g$ strength of quantum fluctuations
- z_0 : bare clean dynamic exponent, for bilayer antiferromagnet $z_0 = 1$

Quantum dynamics of a single percolation cluster

single percolation cluster of s sites

- for $g < g^*$, all rotors on the cluster are correlated but collectively fluctuate in time
- \Rightarrow cluster acts as single (0+1) dimensional NLSM model with moment s

$$\mathcal{A}_s = s \frac{T}{g} \sum_i \sum_n |\omega_n|^{2/z_0} \mathbf{S}(\omega_n) \mathbf{S}(-\omega_n) + sh \int d\tau S^{(1)}(\tau)$$

Dimensional analysis or renormalization group calculation:

$$F_s(g,h,T) = (g^{\varphi}/s^{-\varphi})\Phi\left(hs^{1+\varphi}/g^{\varphi}, Ts^{\varphi}/g^{-\varphi}\right) \qquad \varphi = z_0/(2-z_0)$$

- free energy of quantum spin cluster more singular than that of classical spin cluster
- susceptibility: classically $\chi_s^c \sim s^2$, quantum (at T=0): $\chi_s \sim s^{2+\varphi}$
- dynamical exponent $z = \varphi D_f$ from $\chi_s \sim s^2 / \Delta \Rightarrow \Delta \sim s^{-\varphi} \sim L^{-\varphi D_f}$

Critical behavior

Total free energy is sum over contributions of all percolation clusters

 $F_{\text{tot}} = \sum_{s} n_s (p - p_c) F_s$

General scaling scenario:

[T.V. + J. Schmalian, PRL 95, 237206 (2005)]

$$2 - \alpha = (d + z) \nu$$

$$\beta = (d - D_f) \nu$$

$$\gamma = (2D_f - d + z) \nu$$

$$\delta = (D_f + z)/(d - D_f)$$

$$2 - \eta = 2D_f - d + z$$

- exponents determined by lattice perc. exponents and dynamical exponent z
- classical exponents recovered for z = 0:
- α , γ , δ , and η are **nonclassical** while β is **unchanged**

Exponents

Bilayer antiferromagnet: $\varphi = 1 \Rightarrow z = D_f$

	2d		3d	
	classical	quantum	classical	quantum
α	-2/3	-115/36	-0.62	-2.83
eta	5/36	5/36	0.417	0.417
γ	43/18	59/12	1.79	4.02
δ	91/5	182/5	5.38	10.76
u	4/3	4/3	0.875	0.875
η	5/24	-27/16	-0.06	-2.59
z	-	91/48	-	2.53

Note: site diluted single layer:

- more complicated, Berry phases
- Sandvik + Wang: quantum MC
- value of z changes,

 $z \approx (1.5 \dots 2) D_f$

2D exponents as a function of z_0

- z diverges with $z_0 \rightarrow 2$
- $z_0 = 2$: activated scaling $\ln \Delta \sim L^{\psi}$
- $z_0 > 2$: clusters freeze, no quantum dynamics

Monte-Carlo Simulation

Quantum-to-classical mapping: 3D classical Heisenberg model with linear defects

$$H = K \sum_{\langle i,j \rangle,\tau} \epsilon_i \epsilon_j \mathbf{S}_{i,\tau} \cdot \mathbf{S}_{j,\tau} + K \sum_{i,\tau} \epsilon_i \mathbf{S}_{i,\tau} \cdot \mathbf{S}_{i,\tau+1},$$

- \bullet MC simulations of systems up to $120 \times 120 \times 2560$ sites
- several 10000 disorder realizations
- FSS of Binder cumulant at $p = p_c$ agrees well with theory

 $\Rightarrow z \approx 1.83$

R. Sknepnek, M.V., T.V., PRL 93, 097201 (2004), T.V., R. Sknepnek PRB 74, 094415 (2006)

Experiment

Diluted Heisenberg antiferromagnet $La_2Cu_{1-x}(Zn,Mg)_xO_4$

- neutron scattering experiments [Vajk et al., Science 295, 1691, (2002)]
- correlation length at $p = p_c$: theoretical prediction $\xi \sim T^{-1/z}$

1. Geometric percolation

- 2. Classical magnet on a percolating lattice
- 3. Quantum phase transitions and percolation
 - Transverse-field Ising magnet
 - Bilayer quantum Heisenberg magnet
 - Percolation and dissipation

• couple each spin to local bath of harmonic oscillators

$$H = H_I + \sum_{i,n} \epsilon_i \left[\nu_{i,n} a_{i,n}^{\dagger} a_{i,n} + \frac{1}{2} \lambda_{i,n} \hat{S}_i^z (a_{i,n}^{\dagger} + a_{i,n}) \right]$$

- $a_{i,n}^{\dagger}, a_{i,n}$: creation and destruction operator of the *n*-th oscillator coupled to spin *i*
- $\nu_{i,n}$ frequency of of the *n*-th oscillator coupled to spin *i*
- $\lambda_{i,n}$: coupling constant

Ohmic dissipation: spectral function of the baths is linear in frequency

$$\mathcal{E}(\omega) = \pi \sum_{n} \lambda_{i,n}^2 \delta(\omega - \nu_{i,n}) / \nu_{i,n} = 2\pi \alpha \, \omega e^{-\omega/\omega_c}$$

 α dimensionless dissipation strength ω_c cutoff energy

Phase diagram

- percolation cluster of size s equivalent to **dissipative** two-level system with effective dissipation strength $s\alpha$
- \Rightarrow large clusters with $s\alpha > 1$ freeze small clusters with $s\alpha < 1$ fluctuate
- frozen clusters act as classical superspins, dominate low-temperature susceptibility $\chi \sim |p-p_c|^{-\gamma_c}/T$
- magnetization of infinite cluster

$$m_{\infty} \sim P_{\infty}(p) \sim |p - p_c|^{\beta}$$

 magnetization of finite-size frozen and fluctuating clusters leads to unusual hysteresis effects

J. Hoyos and T.V., PRB **74**, 140401(R) (2006)

Classification of dirty phase transitions according to importance of rare regions

Dimensionality of rare regions	Griffiths effects	Dirty critical point	Examples (classical PT, QPT, non-eq. PT)
$d_{RR} < d_c^-$	weak exponential	conv. finite disorder	class. magnet with point defects dilute bilayer Heisenberg model
$d_{RR} = d_c^-$	strong power-law	infinite randomness	Ising model with linear defects random quantum Ising model disordered directed percolation (DP)
$d_{RR} > d_c^-$	RR become static	smeared transition	Ising model with planar defects itinerant quantum Ising magnet DP with extended defects

- long-range order on critical percolation cluster is destroyed by thermal fluctuations long-range order survives a nonzero amount of quantum fluctuations
 ⇒ permits percolation quantum phase transition
- critical behavior is controlled by lattice percolation exponents but it is different from classical percolation
- in diluted quantum Ising magnets \Rightarrow exotic transition, activated scaling
- Ohmic dissipation: large percolation clusters freeze, act as superspins
 ⇒ classical superparamagnetic cluster phase

Interplay between geometric criticality and quantum fluctuations leads to novel quantum phase transition universality classes