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Geometric percolation

• regular (square or cubic) lattice

• sites are occupied at random
site empty (vacancy) with probability p
site occupied with probability 1− p

Question: Do the occupied sites form a
connected infinite spanning cluster?

• sharp percolation threshold at pc

p > pc: only disconnected finite-size clusters
length scale: connectedness length ξc

p = pc: ξc diverges, clusters on all scales, clusters
are fractals with dimension Df < d

p < pc: infinite cluster covers finite fraction P∞
of sites

p > pc

p = pc

p < pc



Percolation as a critical phenomenon

• percolation can be understood as continuous phase transition

• geometric fluctuations take the role of usual thermal or quantum fluctuations

• concepts of scaling and critical exponents apply

number of sites in infinite cluster: P∞ ∼ |p−pc|βc

connectedness length: ξc ∼ |p− pc|−νc

cluster size distribution:
(number of clusters with s sites):

ns(p) = s−τcf [(p− pc) sσc]
scaling function f(x)

f(x) ∼ exp(−B1x
1/σc) (p > pc)

f(x) = const (p = pc)

f(x) ∼ exp[−(B2x
1/σc)1−1/d] (p < pc)

.

exponents are known exactly in 2D, numerically in 3D
from Stauffer/Aharony
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Classical diluted magnet

H = −J
∑

〈i,j〉
εiεj SiSj − h

∑

i

εiSi

• Si − classical Ising or Heisenberg spin
• εi random variable, 0 with probability p, 1 with probability 1− p

Question:
Phase diagram as function of temperature T

and impurity concentration p?

p pc pp

T TT

pc pc

MCP

FM FM FM

(a) (b) (c)



Is a classical magnet on the critical percolation cluster ordered?

naive argument: fractal dimension Df > 1 ⇒ Ising magnet orders at low T

Wrong !!!

• critical percolation cluster contains red sites

• parts on both sides of red site can be flipped
with finite energy cost

• fractal (mass) dimension Df not sufficient to
characterize magnetic order

⇒ no long-range order at any finite T ,
Tc(p) vanishes at percolation threshold

⇒ phase diagram is of type (b)
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Quantum phase transitions

occur at zero temperature as function of pressure, magnetic field, chemical
composition, ...

driven by quantum rather than thermal fluctuations

paramagnet

ferromagnet
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phase diagram of LiHoF4 (Bitko et al. 96)

Transverse-field Ising model

Ĥ = −J
∑

〈i,j〉
Ŝz

i Ŝz
j − hx

∑

i

Ŝx
i

transverse magnetic field induces spin
flips via Ŝx = Ŝ+ + Ŝ−

transverse field suppresses magnetic order



Imaginary time and quantum to classical mapping

Classical partition function: statics and dynamics decouple

Z =
∫

dpdq e−βH(p,q) =
∫

dp e−βT (p)
∫

dq e−βU(q) ∼ ∫
dq e−βU(q)

Quantum partition function: statics and dynamics coupled

Z = Tre−βĤ = limN→∞(e−βT̂/Ne−βÛ/N)N =
∫

D[q(τ)] eS[q(τ)]

imaginary time τ acts as additional dimension
at T = 0, the extension in this direction becomes infinite

Caveats:
• mapping holds for thermodynamics only
• resulting classical system can be unusual and anisotropic (z 6= 1)
• extra complications with no classical counterpart may arise, e.g., Berry phases



Diluted transverse-field Ising model

HI = −J
∑

〈i,j〉
εiεjŜ

z
i Ŝz

j−hx

∑

i

εiŜ
x
i −hz

∑

i

εiŜ
z
i ,

• first term: interaction between the z-components of the spins
• second term: transverse magnetic field, controls quantum fluctuations
• third term: external magnetic field in z-direction, conjugate to order parameter

Zero-temperature phase diagram as function of
transverse field hx and impurity concentration p?

p pc pppc pc

MCP

FM FM FM

(a) (b) (c)
hx

hxhx



Red sites versus red lines

• quantum fluctuations are less effective in
destroying long-range order

• red sites ⇒ red lines, infinite at T = 0
• flipping cluster parts on both sides of

red line requires infinite energy

Long-range order survives on the
critical percolation cluster

(if quantum fluctuations are not too strong)

⇒ phase diagram is of type (c)

(confirmed by explicit results for quantum Ising and

Heisenberg magnets and for quantum rotors)

t



Generic phase diagram of a diluted quantum magnet

Schematic phase diagram

p = impurity concentration
g = quantum fluctuation strength
T = temperature

(long-range order at T > 0 requires

d ≥ 2 for Ising and d ≥ 3 for Heisenberg

symmetry)

Two zero-temperature quantum phase transitions:

(a) generic quantum phase transition, driven by quantum fluctuations
(b) percolation quantum phase transition, driven by geometry of the lattice

transitions separated by multicritical point at (g∗, pc, T = 0)



Critical behavior of percolation quantum phase transition

To determine the critical behavior of the percolation quantum phase transition:

• first consider single percolation cluster,
• then combine cluster size distribution + free energy of single cluster

Ftot =
∑

s ns(p− pc)Fs

single percolation cluster of s sites

• for small hx, all spins on the cluster are correlated
but collectively fluctuate in time

• cluster of size s acts as two-level system with
moment s

• energy gap (inverse susceptibility) of cluster
depends exponentially on size s

∆ ∼ χ−1
s ∼ hxe−Bs [B ∼ ln(J/hx)]

E

D

~J

-
+



Critical behavior: Results

Static exponents are identical to classical lattice percolation exponents

• magnetization: long-range order on infinite cluster only m ∼ P∞ ∼ |p− pc|βc

• correlation length: correlations cannot extend beyond cluster size
ξ ∼ ξc ∼ |p− pc|−νc

Exponents involving dynamics are nonclassical
(but nonetheless determined by the lattice percolation exponents only)

• correlation time: ln ξτ ∼ ln(1/∆) ∼ s ∼ ξDf ⇒ activated scaling ln ξτ ∼ ξDf

• scaling form of the magnetization at the percolation transition
(Senthil/Sachdev 96)

m(p− pc, hz) = b−βc/νc m
(
(p− pc)b1/νc, ln(hz)b−Df

)

• at the percolation threshold p = pc: m ∼ [ln(hz)]2−τc

• for p 6= pc: power-law quantum Griffiths effects m ∼ hζ
z with nonuniversal ζ
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Diluted bilayer quantum Heisenberg antiferromagnet

H = J‖
∑
〈i,j〉

a=1,2

εiεjŜi,a · Ŝj,a + J⊥
∑

i

εiŜi,1 · Ŝi,2,

• Ŝj,a: quantum spin operator (S = 1/2) at site j, layer a

• first term: in-plane interaction, second term: inter-layer coupling

• ratio J⊥/J‖ controls strength of quantum fluctuations

Phase diagram mapped out by Sandvik (2002)

and Vajk and Greven (2002)
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Nonlinear sigma model

bilayer antiferromagnet can be mapped to quantum nonlinear sigma model
(NLSM)

A =
∫

dτ
∑

〈ij〉
JεiεjSi(τ) · Sj(τ) +

T

g

∑

i

∑
n

εi |ωn|2/z0 Si(ωn)Si(−ωn)

• Si(τ): N -component unit vector at site i and imaginary time τ

• εi = 0, 1: random variable describing site dilution

• g strength of quantum fluctuations

• z0: bare clean dynamic exponent, for bilayer antiferromagnet z0 = 1



Quantum dynamics of a single percolation cluster

single percolation cluster of s sites

• for g < g∗, all rotors on the cluster are
correlated but collectively fluctuate in time

⇒ cluster acts as single (0+1) dimensional
NLSM model with moment s

t

As = s
T

g

∑

i

∑
n

|ωn|2/z0 S(ωn)S(−ωn) + sh

∫
dτS(1)(τ)

Dimensional analysis or renormalization group calculation:

Fs (g, h, T ) = (gϕ/s−ϕ)Φ
(
hs1+ϕ/gϕ, T sϕ/g−ϕ

)
ϕ = z0/(2− z0)

• free energy of quantum spin cluster more singular than that of classical spin cluster

• susceptibility: classically χc
s ∼ s2, quantum (at T = 0): χs ∼ s2+ϕ

• dynamical exponent z = ϕDf from χs ∼ s2/∆ ⇒ ∆ ∼ s−ϕ ∼ L−ϕDf



Critical behavior

Total free energy is sum over contributions of all percolation clusters

Ftot =
∑

s ns(p− pc) Fs

General scaling scenario:
[T.V. + J. Schmalian, PRL 95, 237206 (2005)]

2− α = (d + z) ν

β = (d−Df) ν

γ = (2Df − d + z) ν

δ = (Df + z)/(d−Df)

2− η = 2Df − d + z .

• exponents determined by lattice perc. exponents and dynamical exponent z

• classical exponents recovered for z = 0:

• α, γ, δ, and η are nonclassical while β is unchanged



Exponents

Bilayer antiferromagnet:
ϕ = 1 ⇒ z = Df

2d 3d
classical quantum classical quantum

α −2/3 −115/36 −0.62 −2.83
β 5/36 5/36 0.417 0.417
γ 43/18 59/12 1.79 4.02
δ 91/5 182/5 5.38 10.76
ν 4/3 4/3 0.875 0.875
η 5/24 −27/16 −0.06 −2.59
z - 91/48 - 2.53

Note: site diluted single layer:
• more complicated, Berry phases
• Sandvik+ Wang: quantum MC
• value of z changes,
z ≈ (1.5 . . . 2) Df

2D exponents as a function of z0
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• z diverges with z0 → 2
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no quantum dynamics



Monte-Carlo Simulation

Quantum-to-classical mapping: 3D classical Heisenberg model with linear defects

H = K
∑

〈i,j〉,τ
εiεjSi,τ · Sj,τ + K

∑

i,τ

εiSi,τ · Si,τ+1,

• MC simulations of systems up to 120× 120× 2560 sites
• several 10000 disorder realizations
• FSS of Binder cumulant at p = pc agrees well with theory ⇒ z ≈ 1.83
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Experiment

Diluted Heisenberg antiferromagnet La2Cu1−x(Zn,Mg)xO4

• neutron scattering experiments [Vajk et al., Science 295, 1691, (2002)]

• correlation length at p = pc: theoretical prediction ξ ∼ T−1/z
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Dissipative transverse-field Ising model

• couple each spin to local bath of harmonic oscillators

H = HI +
∑

i,n

εi

[
νi,na†i,nai,n +

1
2
λi,nŜz

i (a†i,n + ai,n)
]

• a†i,n, ai,n: creation and destruction operator of the n-th oscillator coupled to spin i
• νi,n frequency of of the n-th oscillator coupled to spin i
• λi,n: coupling constant

Ohmic dissipation: spectral function of the baths is linear in frequency

E(ω) = π
∑

n

λ2
i,nδ(ω − νi,n)/νi,n = 2π α ωe−ω/ωc

α dimensionless dissipation strength
ωc cutoff energy



Phase diagram

• percolation cluster of size s equivalent
to dissipative two-level system with
effective dissipation strength sα

⇒ large clusters with sα > 1 freeze
small clusters with sα < 1 fluctuate

• frozen clusters act as classical superspins,
dominate low-temperature susceptibility

χ ∼ |p− pc|−γc/T

• magnetization of infinite cluster

m∞ ∼ P∞(p) ∼ |p− pc|β

• magnetization of finite-size frozen and
fluctuating clusters leads to unusual
hysteresis effects

cp
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~mdy

H∆ z

m

p0

m

z0

m

z0

H

H0H =z

J. Hoyos and T.V., PRB 74, 140401(R) (2006)



Classification of dirty phase transitions according to importance
of rare regions

Dimensionality Griffiths effects Dirty critical point Examples
of rare regions (classical PT, QPT, non-eq. PT)

dRR < d−c weak exponential conv. finite disorder class. magnet with point defects

dilute bilayer Heisenberg model

dRR = d−c strong power-law infinite randomness Ising model with linear defects

random quantum Ising model

disordered directed percolation (DP)

dRR > d−c RR become static smeared transition Ising model with planar defects

itinerant quantum Ising magnet

DP with extended defects



Conclusions

• long-range order on critical percolation cluster is destroyed by thermal fluctuations
long-range order survives a nonzero amount of quantum fluctuations
⇒ permits percolation quantum phase transition

• critical behavior is controlled by lattice percolation exponents but it is
different from classical percolation

• in diluted quantum Ising magnets ⇒ exotic transition, activated scaling

• Ohmic dissipation: large percolation clusters freeze, act as superspins
⇒ classical superparamagnetic cluster phase

Interplay between geometric criticality and quantum fluctuations leads
to novel quantum phase transition universality classes


