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Solid
 Helium

     In the crystalline phase, samples of Helium atoms seem to exibit quantum
coherence phenomena … “supersolidity”; microscopic models are needed to
put light into this new intriguing physical scenario.

     At T = 0 K all such methods rely on variational models of the ground state wave
function of a “quantum solid”.
An open problem regards the transformation properties under translations,
whether it would be better to use a wave function translationally invariant,
like a Shadow Wave Function, (S.A. Vitiello, K.Runge and M.H. Kalos, Phys.
Rev. Lett. (1988)) in which inter-particles correlations give rise to a mechanism
of spontaneously symmetry-breaking, or a wave function which explicitly
breaks translational symmetry  introducing a priori the sites of a crystal
lattice, like a Jastrow-Nosanow Wave Function (L.H. Nosanow, Phys. Rev. Lett.
(1964)).

We investigate such symmetry properties of the exact ground
state of the quantum many body problem. 



The model of the system
N spinless structureless
bosons confined
in a cubic box
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To study the bulk properties of
the system, we imagine the
macroscopic system as a
covering of the whole euclidean
space made of boxes identical
to our confinement region.
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Studying the degrees of freedom in the confinement
region, we are making a local description of a
macroscopic sample



Mathematical Description

• Hilbert Space of the system:
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•   Hamiltonian Operator
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Interaction potential
   As a model of effective two-body interaction among 4He atoms

we take the Aziz potential (R.A. Aziz, Mol. Phys., (1987))
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Extension of the interactions
to the images

   In our picture of the
macroscopic system,
the N particles in the
box interact with the
particles in the
identical copies of the
box; introducing a
cutoff distance in the
interaction, so that
only nearest boxes
interact, we write the
interaction term in the
Hamiltonian
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Periodic boundary conditions,
domain of the Hamiltonian

    The domain of the Hamiltonian is made of (equivalence
classes of) functions in the Hilbert Space of the system,
satisfying suitable smoothness properties and periodic
boundary conditions at the boundaries of the confinement
region.
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Mathematical results
Since the interaction potential belongs to the
“Rollnik class”, that is
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the hamiltonian operator defines a compact resolvent
operator densely defined in the Hilbert space of the
system, and the “imaginary time evolution
operator”
is trace-class
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so that one can deduce the following important
properties (Reed-Simon, Methods of modern Mathematical
Physics, vol. II, IV):



Theorem

1) The spectrum of the Hamiltonian
coincides with the discrete set of
eigenvalues

2) The eigenspaces have finite
dimension

3) There exist a s.o.n.c. of
eigenfunctions of the Hamiltonian
operator, with the sequence of
eigenvalues divergent

4) The minimum eigenvalue is non-
degenerate and the corresponding
eigenfunction is strictly positive



The Ground State wave
function

“Projection” formula:
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of the Hilbert space
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Translational invariance

   We are going to prove now the following
symmetry property of the Ground State wave
function, which holds whenever the number of
particles is finite.
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If one of the position vectors falls out of the 
box, we interpret the l.h.s. as the periodic extension 
of the wave function in the box



Proof     Let us construct a wave function,
translationally invariant, with non-

    zero overlap on the true ground
state.
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Due to the a.e. positivity of the ground state wave function
this construction is always possible; for example we may
use a Jastrow Wave function
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The known result that L2-convergence implies the
existence of a subsequence puntually converging,
allows us to write:
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which is the desired result.



Symmetry-breaking

    If the average density of Helium atoms, at T = 0 K,
    exceeds a critical value, the extensive Bragg peaks of the Static
    Structure factor reveals the presence of a crystalline phase; in a
    finite system, the crystalline order arises but the center-of-mass
    motion preserves the translational symmetry, so that the
    translationally invariant wave function describes the solid
    phase. In the thermodynamic limit, the super selection rules
    forbide the center-of-mass motion and the system shows
    translational symmetry-breaking.



Mathematical model
We have shown that the ground state wave function of the finite
system is translationally invariant at any density.
now, we try to induce in the system a periodic modulation in the
local density; let’s define:
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is the minimum energy in the class of wave functions
which give the local density 
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The Stiffness Theorem
We may evaluate the energy cost of creating such a
density modulation using the “Stiffness theorem” about
the ground state wave function
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being the Fourier trasform of the local density operator



A possible mechanism of
symmetry-breaking

In the context of linear response theory it is shown that
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So that one could never lower the
energy modulating the local
density. Despite of that, in the
thermodynamic limit, the
ground
state can become degenerate, if,
for some suitable set of
wave vectors, the static limit of
the density-density response
function diverges faster than the
particles number.



The Bragg Peaks

So that we can write:

It has been proved that:
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Local density modulations governed by the
set of wave vectors which maximizes the
Static Structure Factor, if the average
density if high enough so that the Bragg
peaks are extensive, cost no energy in the
thermodynamic limit.



Conclusions

From this analysis one sees a picture in which inter-particle
correlations give rise to a crystalline order in the system,
inducing a symmetry breaking mechanism. In our opinion,
the explicit introduction of the sites of a crystal lattice in
a variational model of the ground state wave function would 
force the system into a state which could be far from the true
equilibrium.
We think advisable to build up variational models translationally
invariant, as the true ground state of the finite system, and let
the crystalline phase spontaneously arise.


