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@ Effective field theory has become a much more formal tool.

@ Very applicable low energy nuclear/nucleon physics
@ Relies on separation of scales.
@ Too many similar scales in nuclear matter/strong pairing.

@ Many-body theory of weak repulsive force (“natural”) .
[Hammer and Furnstahl, 2000]. Reproduces old results of
Ray Bishop.

@ No real theory for strongly interacting systems.

@ Try to find a simple field-theoretical approach.
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Motivation 2

@ We have used EFT technique to study “reparametrisation
invariance” of many-body techniques

@ We are really interested in the pairing problem.
@ Interested in a very pure problem: pure pairing.

@ Divergent problem, with old solution: divergence of gap
equation is divergence of scattering length. Relate physical
quantities, and loose the infinity!

@ Work we have done a while ago, but are returning to now.
@ See also Blaizot et al, Diehl et al.
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@ All of low energy nuclear physics is not described by
quarks and gluons.

@ Use effective degrees of freedom: point nucleons and
pions (pions are light!)

@ Try to do a perturbative expansion in p//: powercounting.

@ p small momentum or pion mass, A\ typical scale
(300 MeV)

@ Wilsonian RG for scattering has two fixed points

@ Trivial: Weinberg counting

@ Nontrivial: Kaplan-Savage-Wise counting: ladder sum in

zeroth order >< >< Bg

@ Reproduces effective range expansion
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Few Body Systems

3 body

@ See papers by Barfield and Birse

@ Idea is that we can only look at shallow bound states (1/r?
attraction)

@ Consistent power counting: Efimov effect
@ non-trivial RG flow (limit cycle)

4 body
Is there much more to learn?

Many body

No separation of scales: psag second scale (and in NP, effective
range 3rd scale).
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Link to atomic physics

@ Look at dilute atomic systems
@ We have an effective theory of point-like atoms.

@ Interacting mainly through zero-range S-wave scattering
(plus effective range)

@ Tunable scattering length (Feshbach resonance)
@ It may thus be good to apply EFT ideas to such systems....
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Exact Renormalization Group

Basic Object

@ Work with effective action I (see Weinberg, QTF II).
@ Legendre transform of usual W; = InZj;.
@ Functional of classical field.

@ Whereas functional derivatives of W; give expectation
value of field, functional derivatives of I' give expectation
value of (1PI) Green'’s functions.

@ Introduced by Wetterich [PLB301 (1993) 90].

@ Reviews see hep-ph/0005122, cond-mat/0309101.
@ Add artificial running (RG) to problem.
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ERG: The basics |

Zero temperature version—normally finite T
Use a single real scalar field ¢

° /D¢e O1+3:9-30R9)

@ Here R(k) is our regulator function, which suppresses
modes W|th g <Kk.

@ Expectation value of the field: Solve %V\;/ =(¢) = ¢c.
@ Legendre transformed effective action is defined by
1
Moc] =W[I]-J '¢c+§¢c'R'¢c-

o)
@ — [ =J=0no sources.

O ¢
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@ The evolution of W is given by

ieW oW — iZ/Dq)(qrakR~¢)ei(5[‘1’]”‘¢%‘P‘R“l’),

o 5 8§\ w
B _2< 8J) akR( 5J>e

[ 1 . 0 &
= _Ize'W((pC.akR.(pC)_2e'WTr[(8kR)6(3}
1 [ 0¢c
@ Hence we get g, W :—§(¢c~(9kR'¢c)+§Tr [(3kR)5J }

@ From this we find that the evolution of I" is

i S¢c
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ERG: The basics lli

@ From the definition of ' we can get J = — <§(; —-R- q)c) :
(03

@ and hence = —(r®—R),
5¢C ( )
5°r
@ Here % = :
0 0c O Oc

@ We can use this to express the evolution equation for I in
the form of a one-loop integral,

Dl = —%Tr (&R)(F® —R)~1].

@ Note that from now on we may drop the subscript ¢ since
the original quantum field does not appear in I".
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Model Mean Field

Properties of

@ full effective action for k — 0

@ classical action of FT as k — o

@ Choose k to add mass-gap for low-energy modes (q < k)
@ J¢R also UV regulator (bonus).

effect of - for fermions
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The exact in ERG

@ ERG is only exact if we can determine the functional I'[¢|

@ Where have we heard that before—on a par with
Kadanov-Baym, Kohn-Sham, . ...

@ Here the approximations will be done on the level of
parametrising the functional.

@ Richness of parametrisation links directly to quality of
calculation

@ Guiding principle is gradient expansion
@ Results will now depend on the choice of R

@ There are some alternative approaches based on gridding
fields, which have some limited use.
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Attractive force for fermions: pairing
@ Weak attractions: BCS
@ Strong attraction: BEC

@ One type of fermion y (neutron matter or single species
fermionic atomic gas)

@ Chemical potential i
0 o = [d*[yT(id+u+D0?/(2M))y+9g(v' o2y) (v o2y™T)]

@ Boson for correlated fermion pairs (and gap) ¢ through
Hubbard-Stratonovich transformation.

° ¢T4)WT621I/TT
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Effective action

NIVAVANNANTNY
. . Zm
= /d4x [gﬂ (ZQMH %D2> 9—U(9.0")
+yt (zwawuw;—mDZ) y

~Z49 ('E(WT A %(WT@WTTW)}

Bosons have become dynamical

U contains 2 term

Many running couplings!

Expansion points: Bosons around k = 0, fermions around
Fermi momentum/energy (when we have it) or around

k =0, E = —Awhen in BEC phase.

Not sure about full rigour in BEC phase.
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Boson potential

@ Expand U about equilibrium in constant background
po = ¢ 9c: (Note po [ A21)

U = o+ us(976 — po) + 52(60 — po) +...

@ Two phases: symmetric where minimum at pg = 0;
@ condensed phase where u; =0 at pg # 0.

@ Work at fixed density rather than fixed p (want to study
BEC, where u < 0).

@ Solve system of coupled ODE'’s



82r 8°r
@ _ 5¢7(-a’)d¢(a)  8¢7(—q')d¢"(a)
oe 52r 52r
89(—q')d¢(a)  89(-a")d9(a)
Z
[ Bt g (26070 —p0) —U29¢
A
—Uz9'9" ~Z¢0o — 507 — U1 —U2(2979 — po)
8°r 8°r
@ _ Sy(a’)oyT(-a)  Sy'(a)dy’(-a)
FF s2r 52r
sy(@)dy(-a)  dy'(a)dy(-q)
z o
. Zyo — 51 (a2 ~pf) ig9 o

_ z
~ig¢To, ZyGo + 537 (4%~ PE)



graphical representation

N\ 7 \\ // \\ /l \ ’
1 . v N/ Palt 4 N4
) o <
* “‘ : # Rterm ‘! /l\ * /A )\ /K\V)
| 7N A X condensate interaction . ’ N {"\ P \ ’ N
| I | up: ’ '
15} d)
! [ S A .
b= eturdTxre - Zy:
1 [ A
1 [ I \ /
y W
v ;
. '
) ~ + > +
o A
‘ - x



Initial Conditions

@ Use standard approach to scattering theory (without pions)



Initial Conditions

@ Use standard approach to scattering theory (without pions)
@ Follow evolution from large k =K to k ~ 0.



Initial Conditions

@ Use standard approach to scattering theory (without pions)
@ Follow evolution from large k = K to k ~ 0.

@ Initial conditions derived from matching to evolution in
vacuum only.



Initial Conditions

@ Use standard approach to scattering theory (without pions)
@ Follow evolution from large k = K to k ~ 0.

@ Initial conditions derived from matching to evolution in
vacuum only.

@ Analytical solution for u =0

WP | S
YT Tamag ) (27) |Err(9,0,0)  Err(q,0,K)



Initial Conditions

@ Use standard approach to scattering theory (without pions)
@ Follow evolution from large k = K to k ~ 0.

@ Initial conditions derived from matching to evolution in
vacuum only.

@ Analytical solution for =0

WP | S
YT Tamag ) (27) |Err(9,0,0)  Err(q,0,K)

@ uy(0) = —47’;"% (equals T matrix)



Initial Conditions

Use standard approach to scattering theory (without pions)

Follow evolution from large k = K to k ~ 0.

Initial conditions derived from matching to evolution in
vacuum only.

Analytical solution for =0

WP | S
YT Tamag ) (27) |Err(9,0,0)  Err(q,0,K)

u1(0) = —47’;"% (equals T matrix)

Difference of linearly divergent terms!
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Mean Field

Equations can be solved exactly in approximation where
we neglect I'(BZB) —R term in running.
Is just mean field theory.

Marani et al cond-mat/9703160, Papenbrock and Bertsch
nucl-th/9811077.

Finite T: Babaev
Agrees with numerics (next section)
But requires uz: Use mean-field in full calculation.



Mean Field

Effective potential

Mean field effective potential (k = 0)

U810 =
’ 2M~

1 1 X
T T qax?34pr (X
gaks 15 X P\ T A
P["(y) associated Legendre function; ky = v2MA, x = u /A.

Minimise w.r.t. A at fixed N, solve for i and A.
log singularity at small A gives small pga result

Amgg ex _L
YO 2pelal )



Evolution

An example flow equation:

With a uniform mean ¢ field (momentum conserved)

2 Ryt - (zc»qofEBR(qms —Up0p >1
= —Uup¢ToT —Zy0o —Epr(q) +i€
_ 1 ( Z40o +Egr(d) —U20¢ )
7203 —Egr(q)2+ V3 +ie —ux¢T9"  —Z,0d0+Esr(q)

Z
Egr(q) = 5% +U1+U2(29"9 — po) +Re (4, k), and
Vg =u2¢9"¢.
Multiplying by d,Rg and trace gives
1 E Rg(q,k
Etr (9kRB)(r(BZE§—RB)4 _ Br(4) kRe (k)

Z(’%qngBR(Q)ZJrVéJriS-



. 1
This has poles at g = iz— Egr(q)2— V3.
0

Atk =0 (Rg =0) for ¢T¢ £ 0, u; =0)
oL Zma (Znea oyt
and so the spectrum is gapless

Doing the qp integral (as a contour integral) gives
' qu 1 i

o 72042 2 ie .
21 2505 —Eer(Q)*+Vg tie 27, [Ege(q)2— V2




In a similar way, the fermion propagator is

(r[2)7R o= ( ZV/QO*EFR(Q_)JFWSQH(Q*DF) ig¢q2 ; )71
FFTTF ~ig¢To, Zyq0 +Err(q) —ie sgn(q — pg)
_ 1 <ZWQ_0+EFR(Q) —ig¢o; \ >
2202 —Er(q)2 -2 +ie ig¢' oy ZyGo—Err(q) )’

2

where Egg(q) —p£)+Re(9,pr,k) sgn(q —pg), and

A% =g%9pT9.

—_ M



Matrix trace:

%tr {(&(RF) r&- RF)*l} -

2Err(q) sgn(q — pr) dRe (9, PF,K)
2205 —Err(q)? — D2 +ie '

1
Poles at ¢ = iz—f\/EFR(q)Z +A2,
4

For k = 0 in the condensed phase:

1 ZM (2 2 ’
=4+—/( (g2 - N2,
do iL,,\/(ZM(q pp)> + 42,
Gap at q = pg is 20/Zy,.

Integrating over g gives
' qu 1 i

) 2w 7202 —Err(q)2—02+ie  27,\/Em(Q)2 1 A2




Evolution

Full evolution equation for the potential

. 3
akuzviakr - L o/dfa . Ew@ 4R gk
4

22y J (2m)® Egr ()2 —VE

1 / d3q Err(q)

~7, ] Cnp B (q)ZMZSgn(qup)r?kRF(q-pF-k»
FR\4)

Zy .

(Here 7, is the volume of spacetime.)



In the symmetric phase (p = pg = 0)

9’ / d%q 1
f— a R 9
2z, ) (2mPEZ T

2 - A3
us d°g 1
p— R

27, / (2m)° g2 %Rs

Uy = ;p(aku)

p=0
2

Oz = aa ()

p=0

3g* rd%q 1
4z, ] 27y EZ,

a|(R|:',

where Eé%)(q) Z om ¥ 2 +u; +Rg(q,k), and Erg(q) defined
before.



In the condensed phase

(V) (v) (v)2 V)y, (V) (V)2
w2 d3q (EBRfZVB )(EBR —6EgIVy) +2V§ )

2
dkuz = ;T,z (ﬁkU) R 22245 ] (2m)3 (Eéﬁz 7vé“2)5 3 Rsg
R %, | (22?3 (e, f;)z)s 5 SOn(d —pr) kRe,
where
(V) Zm >
Egr () = >m 4 +u2p0+Rg(q,k),
Vév) = Uzpo;,

AV = gypo.



Evolution

Flow over surface

In principle we don’t have to solve at the minimum of potential.
One can solve for the whole potential as e.g., a function of an
input A and u. The output then would be a set of parameters as
a function of the input parameters. Find minimum of U, and
thus determine equilibrium parameters.
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infinite dimensional space where A and p run.



Evolution

Flow over surface

In principle we don’t have to solve at the minimum of potential.
One can solve for the whole potential as e.g., a function of an
input A and u. The output then would be a set of parameters as
a function of the input parameters. Find minimum of U, and
thus determine equilibrium parameters.

Alternative approach: Follow the minimum of the potential,
keeping density fixed. This means we take a path through the
infinite dimensional space where A and p run.

Start in gap-less phase at large scale K, follow evolution down
until u; hits zero, then gap starts to evolve, and we impose the
condition that u; remains zero, which implies an (implicit)
evolution of the gap.
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@ Solve ODEs (ignore running of all Z’s but boson Z,).
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Numerics

Approach to numerics

@ Solve ODEs (ignore running of all Z’s but boson Z;).

@ Crucial (and difficult point) to study evolution at constant
density

@ Start in symmetric phase; rather trivial (unphysical)
transition to broken phase.

@ Studied various Rg g's!



Numerics

Bosonic regulator

Carry out all energy integrals (0-th component) in closed
form.



Numerics

Bosonic regulator

Carry out all energy integrals (0-th component) in closed
form.Regulator only contributes to three-momentum integral:
k2
Re = 5—1(a/k) (f(0) = 1,f(e2) = 0).
Use smoothed step function for f :
f(x)=(erf(x+1)/o)+erf(x—-1)/0))/(2erf(1/0))
2

(Also Rg = 1(q))

5=0.01 0=0.1 =0.5

T2 2,
1.5 1.5
0.5 ‘ 0.5 \
\
L ) P
e e




Numerics

Fermionic regulator

@ Much more tricky;



Numerics

Fermionic regulator

@ Much more tricky;

@ positive for particle state and negative for hole states since
we do not work in a “sensible” particle-hole formalism, but
relative to bare vacuum).



Numerics

Fermionic regulator

@ Much more tricky;
@ positive for particle state and negative for hole states since
we do not work in a “sensible” particle-hole formalism, but

relative to bare vacuum).
2

@ We use Re(q,K,pr, 1) =sgn(q — pm : ((q Pr)/K)

Py = /2Mu,pg = (37%n)Y/3,



Numerics

Fermionic regulator

@ Much more tricky;

@ positive for particle state and negative for hole states since
we do not work in a “sensible” particle-hole formalism, but

relative to bare vacuum).
2
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Fermionic regulator

@ Much more tricky;
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relative to bare vacuum).
2
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® We use R (q,k,pr, 1) = sgn(d — pu) 5 —1((4 —Pr)/k)
Py = /2Mu,pg = (37%n)Y/3,
@ In absence of gap, pr = pu.

@ With gap, Fermi surface will shift (to keep density
constant), or disappear completely for BEC.



Numerics

Fermionic regulator

@ Much more tricky;
@ positive for particle state and negative for hole states since
we do not work in a “sensible” particle-hole formalism, but

relative to bare vacuum).
2

k
® We use R (q,k,pr, 1) = sgn(d — pu) 5 —1((4 —Pr)/k)
Py = /2Mu,pg = (37%n)Y/3,
@ In absence of gap, pr = pu.

@ With gap, Fermi surface will shift (to keep density
constant), or disappear completely for BEC.

@ Use of pg in f avoids complications with derivatives!



Numerics

0.15 1
6_ -
A Z,
4F 4
0 u, 0 }
0.2} T
2F 4
u
0.1 ) 0 5 0 ; 10
k (fm ™) k (fm™) k (fm™)

Numerical solution of the evolution equations for infinite ag,
starting from K = 16 fm .

Blue: full solution, orange: “mean field”.
Transition to condensed phase at kg = 1.2 fm~L.

Contribution of boson loops small-tricky point!
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Cut-off dependence of solutions; log-log plots.




Numerics

Crossover from BCS to BEC

P @ pr defined by density!
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Numerics

Crossover from BCS to BEC

i ‘ -vm:e:.:Lzoxoz'l'l‘z’z’zw
= »:1«“"8”“
ol & @ pr defined by density!
- @ find crossover from BCS
to BEC
0.001
oF %.V%%
10 ""Z'%
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Numerics

Crossover from BCS to BEC

F T R X SO
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 MF rd @ pr defined by density!
B ool @ find crossover from BCS
to BEC
0.001 . c
0E ety @ Little difference between
g, mean field (red) and
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i Y bosonic (green) results
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Numerics

Crossover from BCS to BEC

F \ JESEEERRR CoOlN
1 v:xgz'?:'““
 MF rd @ pr defined by density!
* ok @ find crossover from BCS
to BEC
0.001 0 -
= . Eg%% @ Little difference between
iy mean field (red) and
10+ %= R
I Y bosonic (green) results
r hY
= R @ problems with
301 % convergence in small
7407 ‘ \ iR gap regime
-5 0 5
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Tentative other results

065
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s

045

FIG. 1:

The universal parameter ¢ as the function of ppr-

Numerics

018

FIG. 1: Evolution of the gap

curve) in the unitary regime a

10 0 30 W E)
O, - M)

in the MF approach (dashed curve) and with boson loops (solid

—00 as a function of a mass asymmetry.
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Outlook and Discussion

Better understanding of role of Goldstone bosons.

Does our parametrization correspond to seperable pairing?

Complete analysis of I'! (Wave function renormalisation
constants, and coupling constants)

Analytics mainly done, to be implemenented

Full inclusion of momentum dependent forces (effective
range)

Treatment of ph channels.

Asymmetric matter

Three body forces (maybe)
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