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A “hot” day in Barcelona’s history!

A day like today...
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Motivation: “hot” nuclear systems

E~1MeV=T~10"K

Proto-neutron stars

&’:‘ Chandra X-Ray Observatory

3C58

CXC

SN 1181 remnant (SNR3C58) and
Pulsar PSRJ0205+6449
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Motivation: basic considerations

Nuclear Matter Mean-field approach
L. Symmetric Nuclear Matter EoS - SLy4
@ Infinite system of nucleons L I e
@ No surface effects
@ Densities p ~ 104 gcm3

@ Model interior of heavy
nuclei and neutron stars

p [MeV fm'3]

Liquid-Gas phase transition
@ NN interaction = SR
repulsion, LR attraction
@ Van der Waals-like EoS
® T.~ E/Alp~ 16 MeV 5005 01 05 02 05 03
plfm’]
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Motivation: basic considerations

Nuclear Matter
@ Infinite system of nucleon
@ No surface effects
@ Densities p ~ 10* gcm™3

@ Model interior of heavy
nuclei and neutron stars

Liquid-Gas phase transition

@ NN interaction = SR
repulsion, LR attraction

@ Van der Waals-like EoS
@ 7.~ E/A|, ~ 16 MeV
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Mean-field approach
Symmetric Nuclear Matter EoS - SLy4
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Motivation: one-body Green’s function

@ Definition
iG(71, 7t = <7[a(7t)af(f*;')}>

All the one-body properties of a many-body system can be
derived from the one-body Green’s function:

r—r
=t

Xy = —i /d% lim x(7)G(7, 77)

@ Two-body properties can also be obtained (E, S...)
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SCGF: Ingredients

@ Main approximation: decoupling at the level of G;;
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SCGF: Ingredients

@ Main approximation: decoupling at the level of G;;
@ Includes short-range and tensor correlations
@ Full off-shell energy dependence is considered

@ Based on the perturbative expansion of the propagator at
T=0and T #0

@ Thermodynamically consistent (conserving) theory

@ Ladder includes hole-hole propagation (beyond BHF),
which leads to a pairing instability for 7 =0 ...

@ Finite temperature actually solves theoretical problems!
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

E=

b

=0

+

@ Valid for strong interactions and low densities
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Ladder approximation

@ Valid for strong interactions and low densities
@ Self-consistency is imposed at each step
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

:m@+m+m+w+

@ Valid for strong interactions and low densities
@ Self-consistency is imposed at each step

@ Solved in terms of Dyson’s equation

@ Ladder self-energy
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Ladder approximation

@ Valid for strong interactions and low densities
@ Self-consistency is imposed at each step

@ Solved in terms of Dyson’s equation

@ Ladder self-energy

@ In-medium interaction accounts for ladder scattering
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Ladder approximation

(kik2|T(Z,) | ksks) = (kik2|V]ksks)

&k &k
+V/(2W;3V/ﬁ (kiKka|V|kske) G (Z,: kske) (kske|T(Z,) | ksks)

@ Valid for strong interactions and low densities
@ Self-consistency is imposed at each step

@ Solved in terms of Dyson’s equation

@ Ladder self-energy

@ In-medium interaction accounts for ladder scattering
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Spectral decomposition of the propagator

@ Momentum-frequency space representation
Glk,w) = /OO dw/.A(k,w’){ fW') 4 1 —f(w) }

oo 2T w—w —in w—uw +in

@ Spectral function:

Ak, w) = : —2Im Z(k27 w) i
[w = 55 = ReX(k,w)]" + [Im X (k,w)]
k>ke q
u w ®
W =&p
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Temperature

Spectral functions
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Momentum distributions

oo 2m
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Thermodynamics of correlated nucleons

Free energy: F(p,T) =E — TS
@ Energy (GMK sum rule)

w3 [ S (oA

@ Entropy

S =777

e Can one compute S from the one-body propagator?

e Does fragmentation affect the TD properties?
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Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)
@ Non-perturbative LW functional for the partition function

nz{G} =TrIn[-G'| + Tr=G — ®{G}
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Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)
@ Non-perturbative LW functional for the partition function

nz{G} =TrIn[-G'| + Tr=G — ®{G}

@ d-functional such that:

0lnZ
59’ Go

5_@
59 Go

=0 = X{G}=
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Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)
@ Non-perturbative LW functional for the partition function

an{g} — TrIn [ — g*l} + frZQ — q){g}
@ d-functional such that:
» 100 ()0 @

- o [D
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Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)
@ Non-perturbative LW functional for the partition function

nz{G} =TrIn[-G'| + Tr=G — ®{G}

@ &d-functional such that:
» 100 ()0 @
_da
=5 O [0

Baym, PR 127,1391 (1962)
@ Thermodynamically consistent
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Entropy within the LW formalism

B OoTInZ
- IT

@ Dynamical quasi-particle entropy

Do > dw
S sz:/oozﬂ_cr(w)lﬁ’(k,w)

with the statistical factor o and the B spectral function:

‘ =S+ 9
M

@ Higher order entropy

T<I>{g} +Z/ d‘; W) Ak, w)Re 33 (k, )
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o e R e e s e |
Entropy within the LW formalism

B OoTInZ
- IT

@ Dynamical quasi-particle entropy

SDQ*Z/ B(k,w)

with the statistical factor o and the B spectral function:

o) = ~{f@m[f@)]+[1-f@]m[1-f )]}

‘ =S+ 9
M

@ Higher order entropy

T<I>{g}+Z/ d‘; W) Ak, w)Re 3k, )
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Entropy within the LW formalism

B OoTInZ
- IT

@ Dynamical quasi-particle entropy

Do * dw
S sz:/oozﬂ_cr(w)lﬁ’(k,w)

with the statistical factor o and the B spectral function:

‘ =S+ 9
M

I'(k,w)

Blk,w) = Alk,w) [1 B 6Re§c(uk,w)} N 8Regu(}k,w)

@ Higher order entropy

T<I>{g} +Z/ d‘; W) Ak, w)Re 33 (k, )
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Entropy within the LW formalism

B OoTInZ
- IT

@ Dynamical quasi-particle entropy

Do > dw
S sz:/oozﬂ_cr(w)lﬁ’(k,w)

with the statistical factor o and the B spectral function:

‘ =S+ 9
M

Blk,w) = Alk, ) {1 _ aRez(’wq | ReG(k,w)

Ow Ow Tk, w)

@ Higher order entropy = neglected at low T’s
Carneiro and Pethick, PR 11,1106 (1975)

T<I>{g} +Z/ d‘; W) Ak, w)Re 33 (k, )
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B spectral function

p=0.16 fm”, T=10 MeV
L B

@ 3 has a larger quasi-particle peak

@ B has less strength at large
energies

@ Fragmentation of the qp peak
plays a small role

en'Ako), 2 Bko) MeV']
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Different approximations

p=0.16 fm"
2 ‘ ‘ :
=3 [ SreBkw
? - P = Z/ dw 0'(0.}) (5 [w — 5SCGF(k)]
g K oo
§05k = ; /j:o Sal@is e el
A R
T [MeV]
@ SP2 ~ §9P — width effects unimportant
@ SBHF within a 15%, $* within a 30%
@ SM too large
@ Different lineal slopes = different N(0)’s
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Thermodynamics of correlated nucleons

Free energy "recipe": F = ECMK _ T§PC

@ Energy (GMK sum rule)

> [ e ok

@ Entropy (LW formalism)

@ TD consistency
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Thermodynamical consistency

T=10 MeV - SCGF T=10 MeV - BHF
T 1 1 T 7110
o—e [SCOF) 4 L —e B
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@ SCGF + LW yields u ~ f

@ BHF violates HvH theorem by 20 MeV |11 = 2L & p=v [ n(k, ji)

@ Far from correct saturation
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Thermodynamical Properties of Nuclear Matter

Liquid-gas phase transition

p=p(fi — F/A)
Maxwell construction
T T T T

o
T
1

Pressure [MeV fm'a]
o
=
: : :
1

. , I , I
O'10 0.1 0.2

pfm™]

@ Spinodal zone related to mechanical instability
@ Maxwell construction sets phase coexistence
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Liquid-gas phase transition

BHF SCGF
26 1 1 26
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@ THHF > TICCF

@ Very different critical behaviour!

@ Upper estimate of finite nuclei T,
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Summary

@ The SCGF scheme is a consistent framework for nuclear
many-body calculations at finite temperatures
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Summary

@ The SCGF scheme is a consistent framework for nuclear
many-body calculations at finite temperatures

@ The LW formalism can be used to find the TD properties of
a many-body system from the one-body propagator

@ First time that the correlated entropy is computed for
nuclear matter

@ Different realistic approaches lead to different 7. = room for
improvement!
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Outlook

@ Dependence on the 2-body NN potential

@ Inclusion of 3-body effects

@ Different methods to obtain the TD properties of the system
@ p and T dependences of the microscopic properties

@ Isospin asymmetry and its consequences

@ Pairing phase transition beyond quasi-particle approach

@ Extension to time-dependent systems (HIC)

Arnau Rios Huguet (NSCL) RPMBT14 19t July 2007
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Summary and conclusions

Thank you!
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For further reading |l
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Realistic NN interactions

Phase shifts

NN interaction phase shifts

a
<
S

=

-T2

Arnau Rios Huguet (NSCL)

NN interaction properties

@ NN scattering phase-shifts
@ Deuteron phenomenology
e Bound state
e Tensor component
@ Different phase-shift
equivalent potentials
CDBONN, Av18, etc.
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Analytical continuation

@ Spectral decomposition of Matsubara coefficients

Glkz) — /°° dw’ A(k,w')

oo 2 7y — W

@ Analytical continuation

G(k,z,) il G(k,z)

@ Relation to the retarded propagator

!/
0o 2T Z—Ww

Arnau Rios Huguet (NSCL) RPMBT14

Ak, w")

0o 2T w—w +in
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Analytical continuation

@ Spectral decomposition of Matsubara coefficients

Glkz) — /°° dw’ A(k,w')

oo 2 7y — W

@ Analytical continuation

G(k,z) = G(k,2)
e Can be done under certain assumptions
Baym and Mermin, Jour. Math. Phys. 2, 232 (1961)

@ Relation to the retarded propagator

!/
0o 2T Z—Ww
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Depletion

-3
p=0.16 fm T=10 MeV
T | E— T L B L
03 e SCGF h 0'85 N
*  Free Fermi Gas ) o g
. 0.6 —
g 02 S I -
3 L . 4 5] - ]
| Lo 2 041
8 | eeee® | é) L *e 4
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N 02 « o |
L E ®eqe
Lt L A * s e o o 7
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@ T dependence = f(w)
@ p dependence =- correlations
@ Measure of both thermal and dynamical correlations
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Correlated and non-correlated n(k)

p=0.32 fm”, T=5 MeV p=0.32 fm”, T=5 MeV
T == U
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@ Less populated at low &k
@ More populated at high &
@ Strong fall-off near kg
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B sf

B spectral function
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@ Different p and T dependence
@ High energy tails measure importance of correlations
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Mean-field to correlated energy ratios

25

Ratio of kinetic energies

Ratio of potential energies

- _7
e T=5MeV 3 e T=5MeV A
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+ T=15MeV i + T=15MeV |
A T=20MeV A T=20MeV n
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L 1 8
L 442,
- _3>
- -2
l l | B l l 1t
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@ Kinetic energy = p and T independent
@ Potential energy = large modification
RPMBT14 1gth July 2007
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Free energy and [

0 T

= 0 T T T
T T T

< 13 or ]
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@ F/A minimum disappears with 7' = Ty
@ T, where F/A looses inflexion point
@ 1 and f coincide within 2 MeV
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