Liquid-Gas Phase Transition in Nuclear Matter from a Correlated Approach

Arnau Rios Huguet

National Superconducting Cyclotron Laboratory

Collaborators:

Artur Polls (Barcelona) Àngels Ramos (Barcelona) Herbert Müther (Tübingen)

Arnau Rios Huguet (NSCL) [RPMBT14](#page-42-0) 19th July 2007

 E narry

化重氮 医

A "hot" day in Barcelona's history!

A day like today...

19 July 1936

 $+$ $+$ $+$ \mathbf{h}

Outline

³ [Thermodynamical Properties of Nuclear Matter](#page-22-0)

Motivation: "hot" nuclear systems

$$
E \sim 1 \text{ MeV} \Rightarrow T \sim 10^{10} \text{ K}
$$

AA collisions

4 ロ ト ィ *同* ト

A BIK A BIK BIK YOUN

20

15

Motivation: basic considerations

Nuclear Matter

- Infinite system of nucleons
- No surface effects
- **o** Densities $\rho \sim 10^{14}$ g cm⁻³
- Model interior of heavy nuclei and neutron stars

Liquid-Gas phase transition

- NN interaction ⇒ SR repulsion, LR attraction
- Van der Waals-like EoS
- \bullet *T_c* ∼ *E*/*A*|₀ ∼ 16 MeV

Motivation: basic considerations

Nuclear Matter

- Infinite system of nucleons
- No surface effects
- **•** Densities $\rho \sim 10^{14}$ g cm⁻³
- Model interior of heavy nuclei and neutron stars

Liquid-Gas phase transition

- NN interaction ⇒ SR repulsion, LR attraction
- Van der Waals-like EoS
- \bullet *T_c* ∼ *E*/*A*|₀ ∼ 16 MeV

Motivation: one-body Green's function

o Definition

$$
i\mathcal{G}(\vec{r}t, \vec{r}'t') = \left\langle \mathcal{T}\left[\hat{a}(\vec{r}t)\hat{a}^\dagger(\vec{r}'t')\right]\right\rangle
$$

All the one-body properties of a many-body system can be derived from the one-body Green's function:

$$
\langle \hat{X} \rangle = -i \int d^3r \lim_{\substack{\vec{r} \to \vec{r} \\ t' \to t^+}} x(\vec{r}) \mathcal{G}(\vec{r}t, \vec{r}'t')
$$

Two-body properties can also be obtained (*E*, *S*...)

化重氮 医

\bullet Main approximation: decoupling at the level of \mathcal{G}_{III}

- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- **•** Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

- \bullet Main approximation: decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- **•** Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

- \bullet Main approximation: decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- **•** Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

- \bullet Main approximation: decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- **•** Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

- \bullet Main approximation: decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

KET KALLA BIK KET ALAH KALA

- \bullet Main approximation: decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- **•** Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!

KET KALLA BIK KET ALAH KALA

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- **•** In-medium interaction accounts for ladder scattering

A EXA EX ELEMANO

4 **O E 4 AP E**

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- **Ladder self-energy**
- **•** In-medium interaction accounts for ladder scattering

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- **Ladder self-energy**
- **•** In-medium interaction accounts for ladder scattering

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- **•** Ladder self-energy
- **•** In-medium interaction accounts for ladder scattering

 Ω

④ 重 → 三重 重 →

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- **Ladder self-energy**
- In-medium interaction accounts for ladder scattering

$$
\langle \mathbf{k}_1 \mathbf{k}_2 | T(Z_\nu) | \mathbf{k}_3 \mathbf{k}_4 \rangle = \langle \mathbf{k}_1 \mathbf{k}_2 | V | \mathbf{k}_3 \mathbf{k}_4 \rangle + \mathcal{V} \int \frac{d^3 k_5}{(2\pi)^3} \mathcal{V} \int \frac{d^3 k_6}{(2\pi)^3} \langle \mathbf{k}_1 \mathbf{k}_2 | V | \mathbf{k}_5 \mathbf{k}_6 \rangle \mathcal{G}_{II}^0(Z_\nu; k_5 k_6) \langle \mathbf{k}_5 \mathbf{k}_6 | T(Z_\nu) | \mathbf{k}_3 \mathbf{k}_4 \rangle
$$

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- **•** Ladder self-energy
- In-medium interaction accounts for ladder scattering

化重压 医

Spectral decomposition of the propagator

• Momentum-frequency space representation

$$
\mathcal{G}(k,\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \mathcal{A}(k,\omega') \left\{ \frac{f(\omega')}{\omega - \omega' - i\eta} + \frac{1 - f(\omega')}{\omega - \omega' + i\eta} \right\}
$$

• Spectral function:

Spectral functions

Momentum distributions

Thermodynamics of correlated nucleons

Free energy:
$$
F(\rho, T) = E - TS
$$

• Energy (GMK sum rule)

$$
E^{GMK} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{2} \left\{ \frac{k^2}{2m} + \omega \right\} A(k, \omega) f(\omega)
$$

• Entropy

$$
S = ? ? ?
$$

- Can one compute *S* from the one-body propagator?
- Does fragmentation affect the TD properties?

 $E \rightarrow A E + E + A A$

Luttinger and Ward, PR **118**,1417 (1960)

Non-perturbative LW functional for the partition function

$$
\ln Z\{\mathcal{G}\} = \widetilde{\text{Tr}} \ln \left[-\mathcal{G}^{-1} \right] + \widetilde{\text{Tr}} \Sigma \mathcal{G} - \Phi \{\mathcal{G}\}
$$

 \bullet Φ -functional such that:

$$
\left. \frac{\delta \ln Z}{\delta \mathcal{G}} \right|_{\mathcal{G}_0} = 0 \quad \Rightarrow \quad \Sigma \{\mathcal{G}\} = \left. \frac{\delta \Phi}{\delta \mathcal{G}} \right|_{\mathcal{G}_0}
$$

KET KALLA BIK KET ELE VOO

Arnau Rios Huguet (NSCL) **REMBT14** [RPMBT14](#page-0-0) 19th July 2007 13

Luttinger and Ward, PR **118**,1417 (1960)

Non-perturbative LW functional for the partition function

$$
\ln Z\{\mathcal{G}\} = \widetilde{\text{Tr}} \ln \left[-\mathcal{G}^{-1} \right] + \widetilde{\text{Tr}} \Sigma \mathcal{G} - \Phi \{\mathcal{G}\}
$$

 \bullet Φ -functional such that:

$$
\left. \frac{\delta \ln Z}{\delta \mathcal{G}} \right|_{\mathcal{G}_0} = 0 \quad \Rightarrow \quad \Sigma \left\{ \mathcal{G} \right\} = \left. \frac{\delta \Phi}{\delta \mathcal{G}} \right|_{\mathcal{G}_0}
$$

 $E \rightarrow 4E + E + 0.06$

Baym, PR **127**,1391 (1962)

• Thermodynamically consistent

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 13

Luttinger and Ward, PR **118**,1417 (1960)

Non-perturbative LW functional for the partition function

$$
\ln Z\{\mathcal{G}\} = \widetilde{\text{Tr}} \ln \left[-\mathcal{G}^{-1} \right] + \widetilde{\text{Tr}} \Sigma \mathcal{G} - \Phi \{\mathcal{G}\}
$$

 \bullet Φ -functional such that:

Baym, PR **127**,1391 (1962)

 $1.71 \times 1.71 \times$

 $E \rightarrow 4E \rightarrow E=E \rightarrow 0.0$

• Thermodynamically consistent

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 13

Luttinger and Ward, PR **118**,1417 (1960)

Non-perturbative LW functional for the partition function

$$
\ln Z\{\mathcal{G}\} = \widetilde{\text{Tr}} \ln \left[-\mathcal{G}^{-1} \right] + \widetilde{\text{Tr}} \Sigma \mathcal{G} - \Phi \{\mathcal{G}\}
$$

 \bullet Φ -functional such that:

Baym, PR **127**,1391 (1962)

• Thermodynamically consistent

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 13

 E narry

SACTO DE

$$
S = \left. \frac{\partial T \ln Z}{\partial T} \right|_{\mu} = S^{DQ} + S'
$$

O Dynamical quasi-particle entropy

$$
S^{DQ} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\sigma(\omega)\, \mathcal{B}(k,\omega)
$$

with the statistical factor σ and the B spectral function:

$$
\sigma(\omega) = -\left\{ f(\omega) \ln \left[f(\omega) \right] + \left[1 - f(\omega) \right] \ln \left[1 - f(\omega) \right] \right\}
$$

$$
\mathcal{B}(k, \omega) = \mathcal{A}(k, \omega) \left[1 - \frac{\partial \text{Re} \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re} \mathcal{G}(k, \omega)}{\partial \omega} \Gamma(k, \omega)
$$

■ Higher order entropy \Rightarrow neglected at low *T*'s Carneiro and Pethick, PR **11**,1106 (1975)

$$
S' = -\frac{\partial}{\partial T} T \Phi \{G\} + \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} \mathcal{A}(k, \omega) \text{Re} \Sigma(k, \omega)
$$

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 14

$$
S = \left. \frac{\partial T \ln Z}{\partial T} \right|_{\mu} = S^{DQ} + S'
$$

O Dynamical quasi-particle entropy

$$
S^{DQ} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\sigma(\omega) \,\mathcal{B}(k,\omega)
$$

with the statistical factor σ and the B spectral function:

$$
\sigma(\omega) = -\left\{ f(\omega) \ln \left[f(\omega) \right] + \left[1 - f(\omega) \right] \ln \left[1 - f(\omega) \right] \right\}
$$

$$
\mathcal{B}(k,\omega) = \mathcal{A}(k,\omega) \left[1 - \frac{\partial \text{Re } \Sigma(k,\omega)}{\partial \omega} \right] + \frac{\partial \text{Re } \mathcal{G}(k,\omega)}{\partial \omega} \Gamma(k,\omega)
$$

■ Higher order entropy \Rightarrow neglected at low *T*'s Carneiro and Pethick, PR **11**,1106 (1975)

$$
S' = -\frac{\partial}{\partial T} T \Phi \{ \mathcal{G} \} + \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} \mathcal{A}(k, \omega) \text{Re} \Sigma(k, \omega)
$$

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 14

$$
S = \left. \frac{\partial T \ln Z}{\partial T} \right|_{\mu} = S^{DQ} + S'
$$

O Dynamical quasi-particle entropy

$$
S^{DQ} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\sigma(\omega)\, \mathcal{B}(k,\omega)
$$

with the statistical factor σ and the B spectral function:

$$
\sigma(\omega) = -\left\{ f(\omega) \ln \left[f(\omega) \right] + \left[1 - f(\omega) \right] \ln \left[1 - f(\omega) \right] \right\}
$$

$$
\mathcal{B}(k, \omega) = \mathcal{A}(k, \omega) \left[1 - \frac{\partial \text{Re} \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re} \mathcal{G}(k, \omega)}{\partial \omega} \Gamma(k, \omega)
$$

■ Higher order entropy \Rightarrow neglected at low *T*'s Carneiro and Pethick, PR **11**,1106 (1975)

$$
S' = -\frac{\partial}{\partial T} T \Phi \{ \mathcal{G} \} + \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} \mathcal{A}(k, \omega) \text{Re} \Sigma(k, \omega)
$$

Arnau Rios Huguet (NSCL) [RPMBT14](#page-0-0) 19th July 2007 14

$$
S = \left. \frac{\partial T \ln Z}{\partial T} \right|_{\mu} = S^{DQ} + S'
$$

O Dynamical quasi-particle entropy

$$
S^{DQ} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\sigma(\omega)\, \mathcal{B}(k,\omega)
$$

with the statistical factor σ and the B spectral function:

$$
\sigma(\omega) = -\left\{ f(\omega) \ln \left[f(\omega) \right] + \left[1 - f(\omega) \right] \ln \left[1 - f(\omega) \right] \right\}
$$

$$
\mathcal{B}(k, \omega) = \mathcal{A}(k, \omega) \left[1 - \frac{\partial \text{Re}\,\Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re}\,\mathcal{G}(k, \omega)}{\partial \omega} \Gamma(k, \omega)
$$

Higher order entropy ⇒ neglected at low *T*'s Carneiro and Pethick, PR **11**,1106 (1975)

$$
S' = -\frac{\partial}{\partial T} T \Phi \{ \mathcal{G} \} + \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} \mathcal{A}(k, \omega) \text{Re} \Sigma(k, \omega)
$$

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 14

B spectral function

- \bullet β has a larger quasi-particle peak
- \bullet β has less strength at large energies
- Fragmentation of the qp peak plays a small role

 α

Different approximations

S DQ ∼ *S QP* ⇒ width effects unimportant

- S^{BHF} within a $15\%,$ S^A within a 30%
- S^{NK} too large
- Different lineal slopes ⇒ different *N*(0)'s

化重压 医性

Thermodynamics of correlated nucleons

 \textsf{Free} energy "recipe": $F=E^{GMK}-TS^{DQ}$

Energy (GMK sum rule)

$$
E^{GMK} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{2} \left\{ \frac{k^2}{2m} + \omega \right\} A(k, \omega) f(\omega)
$$

• Entropy (LW formalism)

$$
S^{DQ} = \sum_{k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) \mathcal{B}(k, \omega)
$$

• TD consistency
\n
$$
\mu = \frac{\partial F/V}{\partial \rho} \text{ vs. } \rho = \nu \int \frac{d^3k}{(2\pi)^3} n(k, \tilde{\mu})
$$

Thermodynamical consistency

- \bullet SCGF + LW yields $\mu \sim \tilde{\mu}$
- BHF violates HvH theorem by 20 MeV
- **•** Far from correct saturation

$$
\mu = \frac{\partial F / \mathcal{V}}{\partial \rho} \Leftrightarrow \rho = \nu \int \frac{\mathrm{d}^3 k}{(2\pi)^3} n(k, \tilde{\mu})
$$

Liquid-gas phase transition

- Spinodal zone related to mechanical instability
- **Maxwell construction sets phas[e c](#page-34-0)[oe](#page-36-0)[x](#page-34-0)[ist](#page-35-0)[e](#page-36-0)[n](#page-21-0)[c](#page-22-0)e**

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 19th Ju

压

 Ω

 λ in λ

 \rightarrow \equiv \rightarrow

 \sim

 \leftarrow \Box

Liquid-gas phase transition

- Very different critical behaviour!
- Upper estimate of finite nuclei *T^c*

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 20

- **The SCGF scheme is a consistent framework for nuclear** many-body calculations at finite temperatures
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator
- First time that the correlated entropy is computed for nuclear matter
- \bullet Different realistic approaches lead to different *T_c* ⇒ room for improvement!

REPRENEEMAG

- **The SCGF scheme is a consistent framework for nuclear** many-body calculations at finite temperatures
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator
- First time that the correlated entropy is computed for nuclear matter
- \bullet Different realistic approaches lead to different *T_c* ⇒ room for improvement!

KERKER EL MAG

- **The SCGF scheme is a consistent framework for nuclear** many-body calculations at finite temperatures
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator
- First time that the correlated entropy is computed for nuclear matter
- \bullet Different realistic approaches lead to different *T_c* ⇒ room for improvement!

A BIK A BIK BIK YOUN

- **The SCGF scheme is a consistent framework for nuclear** many-body calculations at finite temperatures
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator
- First time that the correlated entropy is computed for nuclear matter
- Different realistic approaches lead to different $T_c \Rightarrow$ room for improvement!

A EXA EX ELEMANO

Outlook

- Dependence on the 2-body NN potential
- Inclusion of 3-body effects
- Different methods to obtain the TD properties of the system
- ρ and *T* dependences of the microscopic properties
- Isospin asymmetry and its consequences
- Pairing phase transition beyond quasi-particle approach
- Extension to time-dependent systems (HIC)

KET KALLA BIK KET ELE VOO

Thank you!

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경(일) 9 Q @

For further reading I

T. Frick and H. Müther,

Self-consistent solution to the nuclear many-body problem at finite temperature, Physical Review C **68**, 034310 (2003).

- T. Frick, H. Müther, A. Rios, A. Polls and A. Ramos, *Correlations in hot asymmetric nuclear matter,* Physical Review C **71**, 014313 (2005).
- A. Rios, A. Polls and H. Müther, *Sum rules of single-particle spectral functions in hot asymmetric nuclear matter,* Physical Review C **73**, 024305 (2006).

KET KALLA BIK KET ELE VOO

For further reading II

E. V. Soma and P. Bozek,

Diagrammatical calculation of thermodynamical quantities in nuclear matter, Physical Review C **74**, 045809 (2006).

A. Rios, A. Polls, A. Ramos and H. Müther, *Entropy of a correlated system of nucleons,* Physical Review C **74**, 054317 (2006).

 $E \rightarrow 4E \rightarrow E=E \rightarrow 0.0$

Realistic NN interactions

NN interaction properties

- NN scattering phase-shifts
- Deuteron phenomenology
	- **Bound state**
	- Tensor component
- **•** Different phase-shift equivalent potentials **CDBONN**, Av18, etc.

[back](#page-42-1)

Analytical continuation

• Spectral decomposition of Matsubara coefficients

$$
\mathcal{G}(k, z_{\nu}) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k, \omega')}{z_{\nu} - \omega'}
$$

• Analytical continuation

$$
\mathcal{G}(k,z_{\nu}) \xrightarrow{??} \mathcal{G}(k,z)
$$

• Can be done under certain assumptions Baym and Mermin, Jour. Math. Phys. **2**, 232 (1961)

• Relation to the retarded propagator

$$
\mathcal{G}(k,z) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k,\omega')}{z-\omega'} \stackrel{z\to\omega+i\eta}{\longrightarrow} \mathcal{G}^R(k,\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k,\omega')}{\omega-\omega'+i\eta}
$$

 $E \rightarrow 4E \rightarrow E=E \rightarrow 0.0$

[back](#page-42-1)

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 27

Analytical continuation

• Spectral decomposition of Matsubara coefficients

$$
\mathcal{G}(k, z_{\nu}) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k, \omega')}{z_{\nu} - \omega'}
$$

• Analytical continuation

$$
\mathcal{G}(k,z_{\nu}) \xrightarrow{??} \mathcal{G}(k,z)
$$

- Can be done under certain assumptions Baym and Mermin, Jour. Math. Phys. **2**, 232 (1961)
- Relation to the retarded propagator

$$
\mathcal{G}(k,z) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k,\omega')}{z-\omega'} \stackrel{z\to\omega+i\eta}{\longrightarrow} \mathcal{G}^R(k,\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{A}(k,\omega')}{\omega-\omega'+i\eta}
$$

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 27

[back](#page-42-1)

START COMPANY

Depletion

Depletion

- \bullet *T* dependence \Rightarrow *f*(*ω*)
- \bullet ρ dependence \Rightarrow correlations

[back](#page-42-1)

÷. ×. E

Measure of both thermal and dynamical correlations

 Ω

Correlated and non-correlated *n*(*k*)

n(k)

- Less populated at low *k*
- More populated at high *k*
- **o** Strong fall-off near k_F

[back](#page-42-1)

B spectral function

B sf

- Different ρ and *T* dependence
- High energy tails measure importance of correlations

 \rightarrow [back](#page-42-1)

造

l al 298

E

×. \sim

 \blacksquare

Energy ratios

Mean-field to correlated energy ratios

- Kinetic energy $\Rightarrow \rho$ and *T* independent
- Potential energy \Rightarrow large modification

Arnau Rios Huguet (NSCL) **[RPMBT14](#page-0-0)** 19th July 2007 31

 \blacktriangleright [back](#page-42-1)

 Ω

 \mathbf{d} . 舌 造

 \rightarrow

Free energy and $\tilde{\mu}$

- F/A minimum disappears with $T \Rightarrow T_A$
- T_c where F/A looses inflexion point
- \bullet μ and $\tilde{\mu}$ coincide within 2 MeV

 Ω

 \rightarrow [back](#page-42-1)