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A “hot” day in Barcelona’s history!

A day like today...

19 July 1936
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Nuclear Matter at Finite Temperature

Motivation: “hot” nuclear systems

E ∼ 1 MeV ⇒ T ∼ 1010 K

Proto-neutron stars
Chandra X-Ray Observatory

CXC

3C58

SN 1181 remnant (SNR3C58) and
Pulsar PSRJ0205+6449

AA collisions

Nuclear caloric curve
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Nuclear Matter at Finite Temperature

Motivation: basic considerations

Nuclear Matter
Infinite system of nucleons
No surface effects
Densities ρ ∼ 1014 g cm−3

Model interior of heavy
nuclei and neutron stars

Liquid-Gas phase transition
NN interaction ⇒ SR
repulsion, LR attraction
Van der Waals-like EoS
Tc ∼ E/A|0 ∼ 16 MeV

Mean-field approach
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Self-Consistent Green’s Functions at Finite Temperature

Motivation: one-body Green’s function

Definition

iG(~rt,~r′t′) =
〈
T

[
â(~rt)â†(~r′t′)

]〉
All the one-body properties of a many-body system can be
derived from the one-body Green’s function:

〈X̂〉 = −i
∫

d3r lim
~r′→~r
t′→t+

x(~r)G(~rt,~r′t′)

Two-body properties can also be obtained (E, S...)
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Self-Consistent Green’s Functions at Finite Temperature

SCGF: Ingredients

Main approximation: decoupling at the level of GIII

Includes short-range and tensor correlations

Full off-shell energy dependence is considered

Based on the perturbative expansion of the propagator at
T = 0 and T 6= 0

Thermodynamically consistent (conserving) theory

Ladder includes hole-hole propagation (beyond BHF),
which leads to a pairing instability for T = 0 ...

Finite temperature actually solves theoretical problems!
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

=GII +

...+ ++

+ +

+ +

Valid for strong interactions and low densities

Self-consistency is imposed at each step

Solved in terms of Dyson’s equation

Ladder self-energy

In-medium interaction accounts for ladder scattering
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

〈k1k2|T(Zν)|k3k4〉 = 〈k1k2|V|k3k4〉

+ V
∫

d3k5

(2π)3V
∫

d3k6

(2π)3 〈k1k2|V|k5k6〉 G0
II(Zν ; k5k6) 〈k5k6|T(Zν)|k3k4〉

Valid for strong interactions and low densities

Self-consistency is imposed at each step

Solved in terms of Dyson’s equation
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Self-Consistent Green’s Functions at Finite Temperature

Spectral decomposition of the propagator
Momentum-frequency space representation

G(k, ω) =
∫ ∞

−∞

dω′

2π
A(k, ω′)

{
f (ω′)

ω − ω′ − iη
+

1− f (ω′)
ω − ω′ + iη

}
Spectral function:

A(k, ω) =
−2Im Σ(k, ω)[

ω − k2

2m − Re Σ(k, ω)
]2 +

[
Im Σ(k, ω)

]2

qpεω =

k > kF

µ

A

ω
qpεω =

k > kF
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Self-Consistent Green’s Functions at Finite Temperature

Spectral functions
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Self-Consistent Green’s Functions at Finite Temperature

Momentum distributions

n(k) = 〈â†k âk〉 =
∫ ∞

−∞

dω

2π
A(k, ω)f (ω)
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Thermodynamical Properties of Nuclear Matter

Thermodynamics of correlated nucleons

Free energy: F(ρ, T) = E − TS

Energy (GMK sum rule)

EGMK =
∑

k

∫ ∞

−∞

dω

2π

1
2

{
k2

2m
+ ω

}
A(k, ω)f (ω)

Entropy

S =???

Can one compute S from the one-body propagator?

Does fragmentation affect the TD properties?
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Thermodynamical Properties of Nuclear Matter

Luttinger-Ward formalism
Luttinger and Ward, PR 118,1417 (1960)

Non-perturbative LW functional for the partition function

ln Z
{
G
}

= T̃r ln
[
− G−1] + T̃r ΣG − Φ

{
G
}

Φ-functional such that:

δ ln Z
δG

∣∣∣∣
G0

= 0 ⇒ Σ
{
G
}

=
δΦ

δG

∣∣∣∣
G0

Baym, PR 127,1391 (1962)

Thermodynamically consistent
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Thermodynamical Properties of Nuclear Matter

Entropy within the LW formalism

S =
∂T ln Z

∂T

∣∣∣∣
µ

= SDQ + S′

Dynamical quasi-particle entropy

SDQ =
∑

k

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω)

with the statistical factor σ and the B spectral function:

σ(ω) = −
{

f (ω) ln
[
f (ω)

]
+

[
1− f (ω)

]
ln

[
1− f (ω)

]}
B(k, ω) = A(k, ω)

[
1− ∂Re Σ(k, ω)

∂ω

]
+

∂ReG(k, ω)
∂ω

Γ(k, ω)

Higher order entropy ⇒ neglected at low T ’s
Carneiro and Pethick, PR 11,1106 (1975)

S′ = − ∂

∂T
TΦ

{
G
}

+
∑

k

∫ ∞

−∞

dω

2π

∂f (ω)
∂T

A(k, ω)Re Σ(k, ω)
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Thermodynamical Properties of Nuclear Matter

B spectral function
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B has a larger quasi-particle peak

B has less strength at large
energies

Fragmentation of the qp peak
plays a small role
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Thermodynamical Properties of Nuclear Matter

Different approximations
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X

k

Z ∞

−∞

dω

2π
σ(ω)B(k, ω)

SQP =
X

k

Z ∞

−∞
dω σ(ω) δ [ω − εSCGF(k)]

SBHF =
X

k

Z ∞

−∞
dω σ(ω) δ [ω − εBHF(k)]

SDQ ∼ SQP ⇒ width effects unimportant
SBHF within a 15%, SA within a 30%
SNK too large

Different lineal slopes ⇒ different N(0)’s
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Thermodynamical Properties of Nuclear Matter

Thermodynamics of correlated nucleons
Free energy "recipe": F = EGMK − TSDQ

Energy (GMK sum rule)

EGMK =
∑

k

∫ ∞

−∞

dω

2π

1
2

{
k2

2m
+ ω

}
A(k, ω)f (ω)

Entropy (LW formalism)

SDQ =
∑

k

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω)

TD consistency
µ =

∂F/V
∂ρ

vs. ρ = ν

∫
d3k

(2π)3 n(k, µ̃)

Arnau Rios Huguet (NSCL) RPMBT14 19th July 2007 17



Thermodynamical Properties of Nuclear Matter

Thermodynamical consistency
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SCGF + LW yields µ ∼ µ̃

BHF violates HvH theorem by 20 MeV

Far from correct saturation

µ = ∂F/V
∂ρ ⇔ ρ = ν

∫ d3k
(2π)3 n(k, µ̃)
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Thermodynamical Properties of Nuclear Matter

Liquid-gas phase transition
p = ρ(µ̃− F/A)
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Spinodal zone related to mechanical instability

Maxwell construction sets phase coexistence
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Thermodynamical Properties of Nuclear Matter

Liquid-gas phase transition
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Very different critical behaviour!

Upper estimate of finite nuclei Tc
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Summary and conclusions

Summary

The SCGF scheme is a consistent framework for nuclear
many-body calculations at finite temperatures

The LW formalism can be used to find the TD properties of
a many-body system from the one-body propagator

First time that the correlated entropy is computed for
nuclear matter

Different realistic approaches lead to different Tc ⇒ room for
improvement!
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Summary and conclusions

Outlook

Dependence on the 2-body NN potential

Inclusion of 3-body effects

Different methods to obtain the TD properties of the system

ρ and T dependences of the microscopic properties

Isospin asymmetry and its consequences

Pairing phase transition beyond quasi-particle approach

Extension to time-dependent systems (HIC)
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Summary and conclusions

Thank you!
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Correlations in hot asymmetric nuclear matter,
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A. Rios, A. Polls and H. Müther,
Sum rules of single-particle spectral functions in hot
asymmetric nuclear matter,
Physical Review C 73, 024305 (2006).
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Appendix

For further reading II

V. Soma and P. Bozek,
Diagrammatical calculation of thermodynamical quantities in
nuclear matter,
Physical Review C 74, 045809 (2006).

A. Rios, A. Polls, A. Ramos and H. Müther,
Entropy of a correlated system of nucleons,
Physical Review C 74, 054317 (2006).
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Realistic NN interactions

Realistic NN interactions
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Analytical continuation

Analytical continuation
Spectral decomposition of Matsubara coefficients

G(k, zν) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
zν − ω′

Analytical continuation

G(k, zν) ??−→ G(k, z)

Can be done under certain assumptions
Baym and Mermin, Jour. Math. Phys. 2, 232 (1961)

Relation to the retarded propagator

G(k, z) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
z− ω′

z→ω+iη−→ GR(k, ω) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
ω − ω′ + iη

back
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Depletion

Depletion
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n(k)

Correlated and non-correlated n(k)
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B sf

B spectral function
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Energy ratios

Mean-field to correlated energy ratios
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SCGF free energy

Free energy and µ̃
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