ADHESIVE FORCES ON HELIUM IN NONTRIVIAL GEOMETRIES

$E.$ S. H. 1 , A. Hernando 2 , R. Mayo l^2 and M. Pi 2
shernand@df.uba.ar
 1 I Iniversity of Buenos Aires, Argentina

shernand@df.uba.ar

¹ University of Buenos Aires, Argentina University of Buenos Aires, Argentina
² University of Barcelona, Spain University of Barcelona, Spain

Letter Control

University of Barcelona, Spain

University of Barcelona, Spain

Vapor particle ⁺ matter

Vapor particle ⁺ matter

 $\mathbf{r}(\mathbf{r})=\sum_{i}V(\mathbf{r}-\mathbf{r'})$

Vapor particle ⁺ matter

$$
U(\mathbf{r}) = \sum_{i} V(\mathbf{r} - \mathbf{r}')
$$

$$
U(\mathbf{r}) = \int d\mathbf{r}' \, n(\mathbf{r}') \, V(\mathbf{r} - \mathbf{r}')
$$

A popular choice

$$
V_{LJ}(\mathbf{r}) \equiv V_{6-12}(\mathbf{r}) = \varepsilon \left[\left(\frac{r_{min}}{r}\right)^{12} - 2 \left(\frac{r_{min}}{r}\right)^{6} \right]
$$

A popular choice

$$
V_{LJ}(\mathbf{r}) \equiv V_{6-12}(\mathbf{r}) = \varepsilon \left[\left(\frac{r_{min}}{r} \right)^{12} - 2 \left(\frac{r_{min}}{r} \right)^{6} \right]
$$

$$
U(z) = \rho_0 \int_{-\infty}^{0} dz' \int \int dx' dy' V_{6-12}(\mathbf{r} - \mathbf{r}')
$$

A popular choice

$$
V_{LJ}(\mathbf{r}) \equiv V_{6-12}(\mathbf{r}) = \varepsilon \left[\left(\frac{r_{min}}{r} \right)^{12} - 2 \left(\frac{r_{min}}{r} \right)^{6} \right]
$$

$$
U(z) = \rho_0 \int_{-\infty}^{0} dz' \int \int dx' dy' V_{6-12}(\mathbf{r} - \mathbf{r}')
$$

$$
U(z) \equiv V_{3-9}(z) = \frac{D}{2} \left[\left(\frac{z_{min}}{z}\right)^9 - 3\left(\frac{z_{min}}{z}\right)^3 \right]
$$

Geometries with high symmetry

The LJ potential is analytically integrable (or quasiintegrable)

FSM-16 hexagonal pores with six 3-9's

(from M. Rossi, D. E. Galli and L. Reatto, JLTP **¹⁴⁶**, 98 (2006))

How legitimate is the continuum hypothesis?

- How legitimate is the continuum hypothesis?
How accurate is a LJ potential?
- How accurate is a LJ potential?

- \bullet How legitimate is the continuum hypothesis?
- How accurate is a LJ potential? \bullet
- How accurate is a LJ potential?
For metallic planar half-solids, a For metallic planar half-solids, an ab-initio $U(z)$ is $\boxed{U_{CCZ}(z) \neq \int d{\bf r}' \, n({\bf r}') \, V_{pair}({\bf r}-{\bf r}')}$

$$
U_{CCZ}(z) \neq \int d\mathbf{r}' \, n(\mathbf{r}') \, V_{pair}(\mathbf{r} - \mathbf{r}')
$$

(A. Chizmeshya, M. W. Cole, and E. Zaremba, J. Low Temp. Phys. 110, 677 (1998).)

New question

Is the inverse problem solvable?, *i.e.*, given U $_{ef}(z)$, can we find sources $V(\mathbf{r}-\mathbf{r}^\prime)$?

$$
U_{ref}(z) = \int_{-\infty}^{0} dz' \int \int dx' dy' V(\mathbf{r} - \mathbf{r}')
$$

New question

Is the inverse problem solvable?, *i.e.*, given U $_{ef}(z)$, can we find sources $V(\mathbf{r}-\mathbf{r}^\prime)$?

$$
U_{ref}(z) = \int_{-\infty}^{0} dz' \int \int dx' dy' V(\mathbf{r} - \mathbf{r}')
$$

or almost any geometry,

If so, then for *almost any* geometry,

$$
\boxed{U(\mathbf{r}) = \int d\mathbf{r'} \, n(\mathbf{r'}) \, V(\mathbf{r} - \mathbf{r'})}
$$

It is solvable!

For a half-solid with bulk density $\rho_0,$

$$
V(z) = \frac{U_{ref}''(z)}{2\pi \rho_0 z}
$$

It is solvable!

For a half-solid with bulk density $\rho_0,$

$$
V(z) = \frac{U_{ref}''(z)}{2\pi \rho_0 z}
$$
 true for the LJ family
$$
V_{6-12}(r) = \frac{V_{3-9}''(r)}{2\pi \rho_0 r}
$$

It is solvable!

For a half-solid with bulk density $\rho_0,$

$$
V(z) = \frac{U_{ref}''(z)}{2\pi \rho_0 z}
$$
 [true for the LJ family $V_{6-12}(r) = \frac{V_{3-9}''(r)}{2\pi \rho_0 r}$]

so that for other matter distributions $n(\mathbf{r}')$

$$
U(\mathbf{r}) = \int d\mathbf{r}' \, n(\mathbf{r}') \, \frac{U_{ref}''(|\mathbf{r}-\mathbf{r}'|)}{2\pi \rho_0 |\mathbf{r}-\mathbf{r}'|}
$$

A friendly unit cell

Six half-solids make an hexagonal pore

with strong overlap at the vertices

so, we recommend SIX CUSPS INSTEAD

with potential landscape

The wedge

The wedge was **(ESH** et al **in PRB ⁷³, ²⁴⁵⁴⁰⁶ (2006))**

while it may be

with potential

A striped substrate

A sawtooth substrate

FSM-16 hexagonal pores

FSM-16 hexagonal pores

$$
\boxed{\Omega = E - \mu N}
$$

$$
\boxed{\Omega = E - \mu N}
$$

$$
E = L \int \int dx \, dz \, \varepsilon [\rho(x, z)]
$$

$$
\boxed{\Omega = E - \mu N}
$$

$$
E = L \int \int dx \, dz \, \varepsilon [\rho(x, z)] \quad \bigg| \quad N = L \int \int dx \, dz \, \rho(x, z)
$$

$$
\boxed{\Omega = E - \mu N}
$$

$$
E = L \int \int dx \, dz \, \varepsilon [\rho(x, z)] \Big| N = L
$$

$$
N = L \int \int dx \, dz \, \rho(x, z)
$$

 \sim \sim \sim $\frac{\partial \Omega}{\partial s} = 0$

gives

$$
\boxed{\Omega = E - \mu N}
$$

$$
\left| E = L \int \int dx \, dz \, \varepsilon [\rho(x, z)] \right| \quad N = L \int.
$$

$$
\boxed{\frac{\delta\Omega}{\delta\rho}=0}
$$

gives

$$
\left[-\frac{\hbar^2}{2m}\nabla^2 + V\left(\rho\right) + V_s(x,z)\right]\sqrt{\rho(x,z)} = \mu\sqrt{\rho(x,z)}
$$

 $\int r \, dz \, \rho(r \, z)$

Some density profiles obtained with DFT

RPMBT14, July 2007 – p.23

Some EOS computed with DFT

Some EOS computed with DFT

Some energetics

4 Planar Cs is **heliophobic** below ² K,

Why Cesium?

- Planar Cs is heliophobic below 2 K,
- Planar Cs is **heliophobic** below 2 K,
BUT rounding, folding, roughening,
heliophilic (*i.e.*, cvlinders and wedge BUT rounding, folding, roughening, etc, can make
heliophilic (*i.e.*, cylinders and wedges; heliophilic (i.e., cylinders and wedges;

Why Cesium?

- Planar Cs is heliophobic below 2 K,
- Planar Cs is **heliophobic** below 2 K,
BUT rounding, folding, roughening,
heliophilic (*i.e.*, cvlinders and wedge BUT rounding, folding, roughening, etc, can make
 heliophilic (*i.e.*, cylinders and wedges;

Experimental evidence on hysterectic behavior and heliophilic (i.e., cylinders and wedges;
- Experimental evidence on hysterectic behavior and Experimental evidence on hysterectic behavior and
strong dependence of the dynamics of the contact l
in rough Cs surfaces, strong dependence of the dynamics of the contact line in rough Cs surfaces,

(J. Klier, P. Leiderer, D. Reinelt, and A. F. G. Wyatt, Phys. Rev. ^B **⁷²**, ²⁴⁵⁴¹⁰ (2005)

Why Cesium?

- Planar Cs is heliophobic below 2 K,
- Planar Cs is **heliophobic** below 2 K,
BUT rounding, folding, roughening,
heliophilic (*i.e.*, cvlinders and wedge BUT rounding, folding, roughening, etc, can make
 heliophilic (*i.e.*, cylinders and wedges;

Experimental evidence on hysterectic behavior and heliophilic (i.e., cylinders and wedges;
- Experimental evidence on hysterectic behavior and Experimental evidence on hysterectic behavior and
strong dependence of the dynamics of the contact l
in rough Cs surfaces, strong dependence of the dynamics of the contact line in rough Cs surfaces,

(J. Klier, P. Leiderer, D. Reinelt, and A. F. G. Wyatt, Phys. Rev. ^B **⁷²**, ²⁴⁵⁴¹⁰ (2005)

 \Rightarrow the **He–Cs** system is an interesting laboratory for experimenting on wetting physics.

 $RPMBT14$, July 2007 – p.27

It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity

- It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity
- if one knows the planar field $U(z)$.

- It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity
- $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ i .
- if one knows the planar field U
The numerical algorithm is fast The numerical algorithm is fast and precise.

- It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity
- $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ i .
- if one knows the planar field U
The numerical algorithm is fast \bullet
- The numerical algorithm is fast and precise.
No sound qualitative differences are to be fo
either calculation. No sound qualitative differences are to be found in
either calculation, either calculation,

- It is possible to fold, roll up, twist, squeeze, break, It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity
- .
- if one knows the planar field $U(z)$
The numerical algorithm is fast and
- The numerical algorithm is fast and precise.
No sound qualitative differences are to be foreither calculation. No sound qualitative differences are to be found in
either calculation,
but substantial quantitative ones may show up. either calculation,
- but substantial quantitative ones may show up.

- It is possible to fold, roll up, twist, squeeze, break,
wrinkle... a planar solid and get the adsorption
potential $U(\mathbf{r})$ felt by an atom in its vicinity wrinkle... a planar solid and get the adsorption potential $U({\bf r})$ felt by an atom in its vicinity
- $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ i .
- if one knows the planar field U
The numerical algorithm is fast
- The numerical algorithm is fast and precise.
No sound qualitative differences are to be foreither calculation. No sound qualitative differences are to be found in
either calculation,
but substantial quantitative ones may show up. either calculation,
- but substantial quantitative ones may show up.
- but substantial quantitative ones may show up.
Nextcoming release (RPMBT15 and/or earlier
meetings): Condensation of ⁴He in polygonal a Nextcoming release (RPMBT15 and/or earlier
meetings): Condensation of ⁴He in polygonal
curved pores in 2D and 3D at zero and finite meetings): Condensation of ⁴He in polygonal and
curved pores in 2D and 3D at zero and finite
temperatures. temperatures.