Rotational Spectra in Helium Clusters and Droplets RPMBT14, Barcelona, July 2007

Robert E. Zillich*, K. Birgitta Whaley+

*Institute for Theoretical Physics, Johannes Kepler Universität, Linz, Austria presently: PALMS-SIMPA, CNRS, Université de Rennes 1, France +Department of Chemistry, University of California, Berkeley, USA

July 20, 2007

Outline

- Experiment
- Hamiltonian
- Molecule Dynamics and Collective excitations
 - Correlated Basis Function Theory
 - Linewidth of CO in He, bulk and droplet

Molecule Dynamics and Superfluidity

- Path Integral Monte Carlo and Imaginary Time Correlation functions
- Rotational dynamics of LiH in He clusters
- OCS in He clusters and Rb-He exciplexes

Experiment Hamiltonian

Helium matrix isolation spectroscopy

depletion spectroscopy: chromophore excitation detected by evaporating ⁴He atoms.

from J. P. Toennies and A. F. Vilesov

- \rightarrow measureing sharp rovib. spectra of *isolated* molecules at low *T*;
- \rightarrow stabilizing transition states (conformations);
- \rightarrow assembly of small clusters in He?;

 \rightarrow probing $^4\text{He:}$ superfluidity on microscopic scale – microscopic Andronikashvili exp. (Grevenev et al., Science 1998)

(日) (同) (三) (三)

Experiment Hamiltonian

Dynamics of (linear) molecule in He droplet

(日) (同) (三) (三)

э

Experiment: spectrum of OCS in ⁴He and ³He

OCS molecule in pure 4 He and 4 He 3 He mixtures:

- sharp lines for (bosonic) ⁴He
- collapsed spectrum for (fermionic) ³He
- \rightarrow temperature: 0.4K/0.15K

from: J. P. Toennies, A. F. Vilesov, and K. B. Whaley, Physics Today **54**, 31 (2001)

(日) (同) (日) (日)

Experiment Hamiltonian

Hamiltonian for spectroscopy

linear molecule $(\mathbf{r}_0, \Omega) + N$ helium atoms $(\{\mathbf{r}_i\})$:

$$\begin{split} \hat{H} &= \hat{H}_0 + \hat{H}_{mol} + \hat{V} \\ \hat{H}_0 &= -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i < j} v_{He-He} (|\mathbf{r}_i - \mathbf{r}_j|) \\ \hat{H}_{mol} &= -\frac{\hbar^2}{2M} \nabla_0^2 + \mathbf{B} \hat{L}^2(\Omega) \\ \hat{V} &= \sum_{i=1}^N V(\mathbf{r}_i - \mathbf{r}_0, \Omega) \end{split}$$

 $\vec{r_i - r_0}$

3

(日) (同) (三) (三)

 Ω_0

input: gas phase rotational constant Bmolecule-helium interaction potential $V(r, \theta)$

output:

rotational spectrum $S_J(\omega)$ for $0 \rightarrow J$ transition (J = 1)

Experiment Hamiltonian

molecule-helium interaction $V(r, \theta)$

• <u>"fast" rotors</u>: $B \gtrsim 1$ K potential weakly anisotropic $B_{\rm eff}/B$ reduction 0.8 - 0.9no adiabatic following, but coupling to phonon-roton spectrum (CBF)

< 同 > < 三 > < 三 >

• <u>"slow" rotors</u>: $B \lesssim 1$ K potential strongly anisotropic $B_{\rm eff}/B$ reduction 0.3 - 0.4adiabatic following of ρ_n

- Experiment
- Hamiltonian

Molecule Dynamics and Collective excitations

- Correlated Basis Function Theory
- Linewidth of CO in He, bulk and droplet

Molecule Dynamics and Superfluidity

- Path Integral Monte Carlo and Imaginary Time Correlation functions
- Rotational dynamics of LiH in He clusters
- OCS in He clusters and Rb-He exciplexes

A > < > > < >

CBF Theory CO: Rotational Linewidth in He

Correlated Basis Function (CBF) Theory

Given the ground state Φ_0 , make the following ansatz:

$$|\Phi(t)
angle = rac{e^{\delta U(t)}|\Phi_0
angle}{\langle\Phi_0|e^{\Re e \delta U(t)}|\Phi_0
angle}$$

and determine $\delta U(t)$ using stationarity of action integral

$$\mathcal{L} = \int dt \, \langle \Phi(t) | H - i\hbar rac{\partial}{\partial t} | \Phi(t)
angle = \mathsf{Min}.$$

by linearizing and solving the resulting Euler-Lagrange equations $\delta \mathcal{L} = 0$. (Linear response approach)

Ground state Φ_0 obtained from diffusion Monte Carlo (DMC), using descendent weighting for sampling $\langle \hat{A} \rangle$ if $[H, \hat{A}] \neq 0$. or get Φ_0 from anywhere else (e.g. HNC/EL), but must be optimized!

・ロト ・同ト ・ヨト ・ヨト

CBF = Time-dependent pair-density functional theory

Most important contributions to $\delta U(t)$ are from few-body correlations:

$$\begin{array}{lll} \delta U &=& \delta U(\mathbf{r}_1, \dots, \mathbf{r}_N) \\ &=& \text{single particle excitations} + \text{ pair excitations} \end{array}$$

(linearization not valid for e.g. vortices)

Specifically for molecule excitation in helium

$$\delta U = \delta u_1(\mathbf{r}_0, \Omega) + \sum_{i=1}^N \delta u_2(\mathbf{r}_0, \mathbf{r}_i, \Omega)$$

Rotation Spectrum of linear molecule in bulk He

Solution of Euler-Lagrange equations $\delta \mathcal{L}=0$ leads to rotational spectrum "renormalized" by a self-energy. In *bulk* He:

 $E_J = BJ(J+1) + \Sigma_J(E_J)$

and to corresponding absorption spectrum in frequency $\boldsymbol{\omega}$

$$S_J(\omega) = \Im m \Big[\hbar \omega - BJ(J+1) - \Sigma_J(\hbar \omega) \Big]^{-1}$$

 \implies Lorentzian peaks at E_J of width $\Im m\Sigma(E_J)$ (if $\Im m\Sigma(E_J)$ small)

the self energy is given by

 $\Sigma_J(\hbar\omega) = \Sigma_J \Big[ext{ground state pair distribution } g(r, heta) \Big]$

$$= -\frac{B^2}{\pi} \frac{2\rho}{2J+1} \sum_{\ell} \int \frac{dp \ p^2}{S(p)} \ \frac{\sum_{\ell'} \tilde{L}(J,\ell',\ell)g_{\ell'}^2(p)}{B\ell(\ell+1) + \epsilon(p) + \hbar^2 p^2/2M - \hbar\omega}$$

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Results: CBF rotation spectra of molecules in bulk ⁴He

HCN (REZ, K. B. Whaley, PRB'04)

- exp: $B_{\rm eff}/B = 0.814$; CBF: $B_{\rm eff}/B = 0.85$
- confirmed also by PIMC
- increase of $B_{\rm eff}/B$ for DCN consistent with experiment

HCCH (REZ, Y. Kwon, K. B. Whaley, PRL 93, 250401 (2004))

- exp: $B_{\rm eff}/B = 0.89$; CBF: $B_{\rm eff}/B = 0.91$
- confirmed also by PIMC
- large centrifugal distortion constant
- rotation-roton coupling for J = 2

Changing B (stars) \in [0.5 \times B, 1.5 \times B]:

OCS

- CBF does not give accurate excitation energy. Why?...
- ... very strong ⁴He density anisotropy around OCS ⇒ adiabatic following of normal fraction (← superfluidity)
- ⇒ correct and accurate description of rotational dynamics of *light* linear molecules = ∽००० Robert E. Zillich^{*}, K. Birgitta Whaley[†] Rotational Spectra in Helium Clusters and Droplets

Experimental Rovibrational spectrum of CO in large He droplets

- ${\small { \bullet } }$ larger reduction $B \rightarrow B_{\rm eff}$ than other small molecules: 63%
- Iarger (rotational?) linewidth than other small molecules: 0.034cm⁻¹ (FWHM)
- Lorentzian lineshape \Rightarrow homogeneous?
- isotope effect on $B_{\rm eff}$
- ${l 0}\,$ simulations for small clusters give significantly higher $B\to B_{\rm eff}$ of $\sim 78\%$

K. von Haeften et al., PRB 73, 054502 (2006)

- 4 同 6 4 日 6 4 日 6

Experimental Rovibrational spectrum of CO in large He droplets

- larger reduction $B \rightarrow B_{\mathrm{eff}}$ than other small molecules: 63%
- Iarger (rotational?) linewidth than other small molecules: 0.034cm⁻¹ (FWHM)
- Lorentzian lineshape \Rightarrow homogeneous?
- isotope effect on $B_{\rm eff}$
- ${l 0}\,$ simulations for small clusters give significantly higher $B\to B_{\rm eff}$ of $\sim 78\%$

sample $g(r \cos \theta)$ by DMC

K. von Haeften et al., PRB 73, 054502 (2006)

・ロト ・同ト ・ヨト ・ヨト

CBF results for rotational spectrum of CO in bulk He

CBF explanation of experimental findings:

・ロト ・同ト ・ヨト ・ヨト

CBF results for rotational spectrum of CO in bulk He

CBF explanation of experimental findings:

- Lorentzian lineshape ⇒ homogeneous? CBF for bulk yields indeed Lorentzian shape due to homogeneous (lifetime) broadening. BUT: see next slide.
- isotope effect on $B_{\rm eff}$ CBF yields correct isotope correction of $B_{\rm eff}$ due to center of mass shift of potential.

ith CBF/DMC correction ut CBE/DMC correction ¹²C¹⁶O expand: $B_{\text{eff}}^{(i)} = B_{\text{eff}}^{(1)} + \frac{\partial B_{\text{eff}}}{\partial B} \Delta B^{(i)} + \frac{\partial B_{\text{eff}}}{\partial \Delta z} \Delta z^{(i)}$ α - ν - 2Δ₂B_{eff} 1st derivative: assume linear scaling $\frac{\partial B_{eff}}{\partial B} \approx \frac{B_{eff}^{(1)}}{B_{eff}^{(1)}}$ 2nd derivative: correlated DMC sampling $\Rightarrow \omega^{(i)} = \nu^{(i)} + \alpha + 2 \cdot \frac{\mu^{(1)}}{\mu^{(i)}} B^{(1)}_{\text{eff}} + 2 \frac{\partial B_{\text{eff}}}{\partial \Delta z} \Delta z^{(i)}$ \Rightarrow obtain vibrational shift α and $B_{\text{eff}}^{(1)}$ from linear fit: 3C180 1.80 1.85 1,90 1,95 2.00 2μ/μ

Robert E. Zillich*, K. Birgitta Whaley⁺ Rotational Spectra in Helium Clusters and Droplets

< ロ > < 同 > < 回 > < 回 >

CBF: Rotational spectrum of CO in He droplet (with K. K. Lehmann)

what is minimum model, based on CBF, for CO in finite droplet of radius R / size N?

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Droplet size dependence of Rotational spectrum of CO in He

Result:

blue shift for decreasing \bar{N} , but near-perfect Lorentzian line shape

10000

experiment:

CBF model[.]

伺 と く ヨ と く ヨ と

э

Droplet size dependence of Rotational spectrum of CO in He

Result:

blue shift for decreasing \bar{N} , but near-perfect Lorentzian line shape

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Droplet size dependence of Rotational spectrum of CO in He

- finite droplet CBF model reproduces \bar{N} dependence
- Lorentzian lineshape ⇒ homogeneous? *finite* droplet model yields *inhomogeneous* Lorentzian shape due to size distribution.
- general statement:

single particle / localized excitation coupled to a collective excitation yields inhomogeneous Lorentzian lineshape, provided there is a sufficient spread of system sizes; equal to linewidth in bulk.

consistent with exactly solvable model of Lehmann (J. Chem. Phys.'07).

still to do:

full CBF theory of chromophore in finite ⁴He droplet.

(日) (同) (三) (三)

CBF Theory CO: Rotational Linewidth in He

What's next after that?

molecules well understood: CO, HCN, HCCH, CH₄,...

CBF theory of (c.o.m. motion and) internal degrees of freedom = rotation.

- \rightarrow Elastic and inelastic scattering of particles in ⁴He:
 - \bullet initial step for synthesis of small structures (e.g. Si clusters) in ⁴He clusters.
 - dilute ³He-⁴He mixtures

・ロト ・同ト ・ヨト ・ヨト

- Experiment
- Hamiltonian

Molecule Dynamics and Collective excitations

- Correlated Basis Function Theory
- Linewidth of CO in He, bulk and droplet

3 Molecule Dynamics and Superfluidity

- Path Integral Monte Carlo and Imaginary Time Correlation functions
- Rotational dynamics of LiH in He clusters
- OCS in He clusters and Rb-He exciplexes

・ 同 ト ・ 三 ト ・ 三

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciplexes

Path Integral Monte Carlo

for molecules in helium (primitive approximation + pair density approximation):

$$\begin{split} \rho(\tau) &= \rho_{\text{trans}}(\{\mathbf{r}_i\},\{\mathbf{r}'_i\};\tau)\rho_{\text{rot}}(\Omega,\Omega';\tau) \\ &\times \exp\left[-\sum_{i>j}u(r_{ij},r'_{ij};\tau) - \frac{\tau}{2}\sum_i(V(r_i,\cos\theta_i) + V(r'_i,\cos\theta'_i))\right] \end{split}$$

 \iff classical system of harmonic chains

Bose symmetry:

$$\rho(R, R'; \beta) \rightarrow \frac{1}{N!} \sum_{P} \rho(R, PR'; \beta)$$

 \iff reconnecting chains

D. M. Ceperley, Rev. Mod. Phys. **67**, 279 (1995) REZ, F. Paesani, Y. Kwon, K. B. Whaley , J. Chem. Phys. **123**, 114301 (2005)

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

Linear Response: Excitations from Imaginay Time Correlation functions

The imaginary time orientational correlation function

$$S_J(\tau) = \sum_M \operatorname{Tr} \{ \rho \; Y_{JM}(\Omega(\tau)) Y_{JM}(\Omega(0)) \}$$

is the Laplace transform of the rotational spectrum $S_J(\omega)$

$$S_J(au) = \int d\omega \,\, e^{-\omega au} S_J(\omega)$$

 $S_J(au)$ easy to calculate by PIMC

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

Linear Response: Excitations from Imaginay Time Correlation functions

The imaginary time orientational correlation function

$$S_J(\tau) = \sum_M \operatorname{Tr} \{ \rho \; Y_{JM}(\Omega(\tau)) Y_{JM}(\Omega(0)) \}$$

is the Laplace transform of the rotational spectrum $S_J(\omega)$

$$S_J(au) = \int d\omega \,\, e^{-\omega au} S_J(\omega)$$

 $S_J(au)$ easy to calculate by PIMC

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

LiH-He interaction potential

unlikely combination:

- strongly anisotropic LiH-He interaction $V(r, \theta)$
- gas phase rotational constant of LiH: B = 10.8K

Robert E. Zillich*, K. Birgitta Whaley⁺

Rotational Spectra in Helium Clusters and Droplets

(日) (同) (日) (日)

Introduction PIMC and Imaginary Time Correlation fur Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciplexes

What is structure and dynamics of $LiH-He_N$?

LiH inside droplet or floating on surface?

Figure 13. The experimentally available rotational constants in helium droplets (B_{He}) and the gas-phase (B_0) for heavy molecules (a) and light molecules (b).^[134]

J. P. Toennies, A. Vilesov, Ang. Chem. 43, 2622 (2004)

is classification only according to B_0 meaningful?

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He excipiexes

Structure: pair density and confinement

He-LiH pair density:

LiH density w/resp to center of mass:

conclusion

 \Rightarrow LiH is *inside* droplet

REZ, K. B. Whaley, in press J. Chem. Phys (2007)

Robert E. Zillich*, K. Birgitta Whaley⁺

Rotational Spectra in Helium Clusters and Droplets

・ 同 ト ・ 三 ト ・ 三

Introduction PIMC and Imaginary Time Correlation fur Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciplexes

Dynamics: rotational spectrum

maximum entropy inversion $S_I(\tau) \rightarrow S_I(E)$ yields rotational spectrum (J = 1): N=40N=20 (E) N=15 N=10 N=6N-3N=2N=1 2 3 5 0 1 4 6 E [K]

- similar to other molecules (OCS, CO₂, N₂O,...): gradual transition from full adiabatic following of ⁴He to partial adiabatic following (of superfluid fraction)
- higher transitions with smaller weight (required by sum rule $\int d\omega \ \omega S(\omega) = 2B_0$)
- rotational linewidth is artefact from entropy smoothing

(日) (同) (日) (日)

Introduction PIMC and Imaginary Time Correlation function Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidty OCS in He clusters and Rb-He exciplexes

Dynamics: rotational excitation energies

 \Longrightarrow associate maximum of peak with excitation energy:

(lowest) $J = 0 \rightarrow 1$ excitation energies as function of N:

relative reduction, ${\cal B}_{\rm eff}/{\cal B},$ of molecules in large He droplets (exp.) compared to LiH-^4He_{40}:

イロト イポト イヨト イヨト

э

conclusion

classification according to B alone not meaningful (consistent with isotope effect for CO in He).

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

< ロ > < 同 > < 三 > < 三

Dynamics: influence of Bose symmetry

PIMC simulation with Boltzmann and Bose helium:

 \rightarrow single(?) excitation at $E=2B_{\rm eff}$ in Bose case in the shown energy window \rightarrow additional lower energy excitations in Boltzmann case

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

$OCS^{-4}He_N$ re-re-...-visited: B_{eff} for large N

typical experimental observation for molecule in ${}^{4}\text{He}_{N}$ clusters:

- $B_{\rm eff}$ does not converge quickly to large droplet (i.e. bulk) limit with growing N
- B_{eff} oscillates as function of N

Reason for oscillations, slow convergence to bulk? Magic numbers?

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Microscopic Superfluidity OCS in He clusters and Rb-He exciptexes

OCS-⁴He_N re-re-...-visited: $B_{\rm eff}$ for large N

lowest ⁴He excitations ω_{ℓ} for $\ell = 2, dots, 8$:

no crossing of μ and ω_{ℓ} .

< E

< E

э

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciptexes

$OCS^{-4}He_N$ re-re-...-visited: B_{eff} for large N

oscillation, but not same periodicity as $B_{\rm eff}$ oscillation

э

(日) (同) (三) (三)

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

< 17 >

Rb*He exciplex formation on ⁴He and ³He droplets

Bielefeld experiment:

Pump-probe spectrum for excitation of Rb from g.s. to $\Pi_{1/2}$ and $\Pi_{3/2}$:

G. Droppelmann et al. PRL 93, 023402 (2004)

- phenomenological tunnelling model ambiguous.
- why formation of Rb⁴He faster than Rb³He?
- vibrational relaxation mechanism?

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciplexes

Equilibrium of Rb-⁴He₁₀₀

electronic ground state: Rb sits in dimple \rightarrow probe pulse excites Rb to $\Pi_{3/2}$ $E_B = -11$ K

Introduction PIMC and Imaginary Time Correlation function Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciplexes

Equilibrium of Rb-⁴He₁₀₀

electronic ground state: Rb sits in dimple \rightarrow probe pulse excites Rb to $\Pi_{3/2}$ $E_B = -11$ K electronic excited state $\Pi_{3/2}$: none-pairwise additive DIM potential Rb*He₁ exciplex formation $E_B \approx -11$ K

(日) (同) (日) (日)

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

(日) (同) (日) (日)

0.03

0.025

0.02

0.01

0.005

Equilibrium of Rb-⁴He₁₀₀

electronic ground state: electronic excited state $\Pi_{3/2}$: Rb sits in dimple Rb in center of He₆₄ droplet Rb*He₂ exciplex formation \rightarrow probe pulse excites Rb to $\Pi_{3/2}$ $E_B = -11 \text{K}$ -150 0.03 0.025 -105 0.02 -5 0.015 10 0.01 ¥ 15 $\begin{bmatrix} \bar{v} \\ z \end{bmatrix}_{z}^{n}$ 0.005 5 20 10 25 15 30 -10-15-5 0 5 10 15 -15-10-5 0 5 10 15 R [Å] R [Å]

measured Rb*He formation time = 8.5ps \longrightarrow MCTDH of very small clusters

Summary

- CBF theory can reproduce and explain rotational spectra of molecules in superfluid He
 - renormalized excitation energy ($\to {\it B}_{\rm eff})$ by coupling to collective excitations of He
 - Linewidth by coupling to long wavelength phonon
 - phenomenological model of finite size effects \longrightarrow full CBF implementation
- equilibrium PIMC allows calculation of rotational spectra (sometimes completely, sometimes effective constants)
 - N dependence
 - T dependence
 - sharp rotational spectra due to superfluidity of He

(日) (同) (三) (三)

Acknowledgements

Klaus von Haeften, Martina Havenith

Patrick Huang (maxent), Francesco Paesani (potentials), Yongkyung Kwon (PIMC)

Alexandra Viel (Rb*), Jean-Michel Launay; Kevin K. Lehmann (CO linewidth)

Miller Institute of Basic Research and Science grant

"lilli reloaded" – supercomputing center of Johannes Kepler Univ., Linz, Austria

NSF CHE-0107541; NPACI NSF 930004 grant with San Diego Supercomputing center

(日) (同) (日) (日)

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

Solid He with Dislocation

Perfect hcp helium probably not superfluid. hcp helium with defects?

construction of boundary condition for edge dislocation:

3 concentric cylinders:

- inner: ⁴He with Bose exchange (N = 102)
- 2 middle: ⁴He w/o exchange (N = 228)
- outer: rigid ⁴He models far field displacement of dislocation (N = 306)

・ロト ・四ト ・ヨト ・ヨト

PIMC and Imaginary Time Correlation functions Rotational dynamics of LiH in He clusters OCS in He clusters and Rb-He exciplexes

Solid He with Dislocation

total density:

winding-paths-density ($\neq \rho_s$):

rigid system \Rightarrow very inefficient sampling of exchange

Introduction PIMC and Imaginary Time Correlation functions Collective excitations Rotational dynamics of LiH in He clusters Microscopic Superfluidity OCS in He clusters and Rb-He exciptexes

Solid He with Dislocation

Dislocation w/PIMC: linear response to translation \Rightarrow winding path estimator:

$$f_s \equiv rac{
ho_s}{
ho} = rac{m}{\hbar^2} rac{\langle W^2
angle}{Neta}$$

E. L. Pollock, D. M. Ceperley, PRB **36**, 8343 (1987) w/resp to inner cylinder (N = 102) $\Leftrightarrow 1$ dislocation / 200Å² !

Robert E. Zillich*, K. Birgitta Whaley⁺

Rotational Spectra in Helium Clusters and Droplets