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SUPERSOLID STATE
A quantum solid (4He) with some sort of superfluid properties like non

classical moment of inertia, BEC
Theoretical works ante Kim-Chan experiments (2004)
A. Possible presence of vacancies in the ground state (Andreev and Lifshitz 1969)

B. Model wave functions exist with crystalline order, a finite concentration
of vacancies and a finite BEC
(Chester 1970, stimulated by proof (Reatto 1969) that a Jastrow wf has BEC)

C. Non classical rotation of a quantum solid; 
rigidity of wave function: ρs/ρ>0 if local density ρ(r)>0 (Leggett 1970)

D. …work by Saslow, Guyer,…
….
M. proof that a SWF wf has BEC (Reatto, Masserini, PRB 1988)

….
Z. Microscopic computation of the condensate induced by vacancies in solid

4He from variational theory (Galli-Reatto, JLTP 2001)
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Supersolid State
• If Off Diagonal Long Range Order (ODLRO) is present

we expect some superfluid phenomena
State with LRO+ODLRO
Behavior of the
one-body density matrix

• Theory indicates that this must happen somewhere
 (use a Jastrow or a SWF, which both have LRO+ODLRO, to define     )
• There is now solid evidence that Bose Hubbard model on

a lattice can show LRO+ODLRO, in 4He however the
lattice is self-built by the atoms
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Experiments (1)
• Experimental search of the supersolid state in ‘70 and ‘80 has been unsuccessful

BREAKTHROUGH
Kim and Chan find non classical rotational inertia
(NCRI) in
• 4He in vycor (Nature, Jan. 2004)
• 4He in porous gold (JLTP, Febr. 2005)
• 4He bulk (Science, Sept. 2004)

Torsion RodCell
containing
helium

Drive

Detection
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" = 2#
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K
period I = Moment of 

inertia

Drive

supersolid fraction
is on the order of
1.3% at lowest T

• Superfluidity of bulk crystalline 4He
is the correct explanation?



Experiments (2)
Supersolid behavior in torsional oscillator experiments in other laboratories (results
reported at workshop “Physics of supersolid and related topics”, Keio University, April 2007)

• Rittner-Reppy (Cornell) find NCRI, signal goes below detection level after
suitable annealing, in bad quality samples ρs/ρ as large as 20% is found
• Shirahama and collaborators (Keio Un.) find NCRI, ρs is one order of magnitude
smaller compared to the PSU results
• Penzeyv and Kubota (ISSP, Un. Tokyo) find NCRI for a solid under DC rotation ,
no dependence on the angular velocity
• Kojima (Rutgers) find NCRI , measurements on the same sample at two different
frequencies: results in disagreement with classical glass model (Nussinov)

•   Beamish and coworkers experiment (PRL 2005 and 2006) rules out some
possible alternative explanations, on the other hand they see no pressure-
induced flow in the pores
• Balibar and coworkers (Science 2006) find superflow
in solid 4He at coexistence with liquid only when
grain boundaries are present, it seems likely
that this phenomenon is distinct from the NCRI

h

Other measurements



Comments:
• no doubt that the NCRI is strongly dependent on some sort of defects
(unlikely grain boundaries, perhaps dislocations)
• classical explanations (relaxation mechanism, glass) are incompatible
with experiments
• overall picture is still confused

•   Chan and coworkers
find NCRI in a single
crystal sample, sharper transition
is found but different samples give
different ρs

• T-dependence in pure (x3He≈10-9)
samples collapses into a single
curve which can be fitted
with 2/3 power law (3D XY model)

• Kim and Chan find an excess specific heat below 100 mK, a broad
peak at ≈75 mK, present also for x3He≈10-9

Experiments (3)
Clark, West, Chan, arXiv:0706.0906



Some basic questions for
Many-Body Theory

• Is the ground state of 4He commensurate or is it
incommensurate?

Commensurate: n0 of atoms = n0 of sites
Incommensurate: n0 of atoms ≠ n0 of sites
in other words: are ground state vacancies present?

(interstitials seem less likely)
• Does a commensurate solid 4He have ODLRO?
• Is ODLRO present only if some sort of disorder

(vacancies, grain boundaries,…) exists either as
equilibrium or as metastable states?

Only microscopic MB theories are able to answer such
questions



Microscopic theories based on
Monte Carlo simulations

• Finite temperature:
– Path Integral Monte Carlo (PIMC)
– Worm Algorithm PIMC (add an open polymer in the

picture)

• Ground state:
– Variational theory 

(Jastrow, Jastrow-Nosanow, Shadow wave function)
– “exact” projection methods (Diffusion MC, Path

Integral Ground State (PIGS), Shadow PIGS,…)

  
  
  
  

Present status: 
points of agreement and points of disagreement
are present between the two approaches



Finite temperatureFinite temperature (T≥0.1 K) PIMC results
(Ceperley and coll.; Prokof’ev and coll.)

• The commensurate state of solid 4He (3D) is an “insulator”: n0=0, ρs=0
• Only in presence of extrinsic disorder (generic grain boundaries, walls,

dislocations) one has supersolid behavior (n0≠0, ρs≠0)
• Multiple vacancies form a bound state (Prokof’ev and coll.)

Interpretation of PIMC results (Prokof’ev and coll.)
• The ground state of solid 4He is commensurate, no vacancies at low T

Ground stateGround state

n0≠0n0≠0Grain boundaries, walls
n0≠0n0≠0Incommensurate state

undecided yet
( n0 ≤ 2.5x10-8 )n0≠0Commensurate state

incommensurate,
… but τ→∞?

incommensurateCommensurate or
incommensurate?

unboundedunboundedMultiple vacancies

“Exact” T=0 K states
(SPIGS)

Variational theory
(SWF)



Solid 4He: some important aspects
• Bragg scattering → translational broken

symmetry (LRO)
• Very large Lindeman ratio at low density:

• Solid helium is a very soft solid
• One can grow almost perfect crystals (but it is

not easy): large single crystal with very few
dislocations
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Vacancy-interstitial pairs (VIPs)

• Even in a commensurate state (no lattice
sites = no atoms) one finds the presence of
vacancy-interstitial pairs (VIPs)

• These VIPs are not excitations but simply
fluctuations of the lattice; they are part
of the large zero-point in the ground state
of the solid

• The term “pairs” is used to underline the
origin of these zero-point processes.

• Are VIPs unbound?
      Yes for SWF variational theory
      Not clear yet for exact ground state
• (SPIGS) VIP frequency: ≈1 every 103 MC

steps with 180 4He atoms   ⇒ Xvip≈5.6x10-6
Doubly occupied 

lattice site

hcp basal plane ρ=0.029 Å-3

vacant 
lattice site

Evidence from theory



vacancy excitation spectrum (SWF result)

• Vacancy very mobile, in agreement with recent experiments
Andreeva et al., J.Low Temp.Phys. 110, 1998

• Band width decreases at larger density ! 
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Galli, Reatto, Phys.Rev.Lett. 90, 2003;
Galli, Reatto, J.Low Temp.Phys. 134, 2004

residence time (hcp)

Near melting
density
ρ=0.029 Å-3 

only 4 (and 2 in
bcc) time larger
than the period of
high frequency
phonon in the
crystal

• SWF result
— n.n. jump model best fit
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The results are variational, exact results are not yet available



Projector QMC methods: Path Integral Ground State
Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

Path Integral representation of the propagator:

First approximation: finite imaginary time propagation

Second approximation: the exact propagator is not known, short time
approximation with  δτ=τ/P << 1   (es. pair-product)

Path Integral Ground State (PIGS) wave function, Ψτ :

        TEST of convergence in τ (τ→∞) and accuracy of G (δτ→0)

  

! 

"0(R) = lim#$% dR1LdR
P

R e
&#

P

ˆ H 

R
P
'L' R2 e

&#
P

ˆ H 

R1 "
T
(R1)(

  

! 

"
0
(R) # dR

1
LdR

P
R e

$%
P

ˆ H 

R
P
&L& R

2
e
$%

P

ˆ H 

R
1
"

T
(R

1
)'

! 

e
"# ˆ H = e

"#
P

ˆ H ( )
P

! 

"# (R) = dR j
j=1

P

$ G(R j+1,R j ,
#
P
)

% 
& ' 

( 
) * 
"T (R1)+



Projector QMC methods: Path Integral Ground State
Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

• Classical-Quantum mapping:

Ground state averages are equivalent to canonical averages of a
classical system of special interacting linear polymers:
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• P projections: 
  linear polymers
  with 2P+1 atoms
• Monte Carlo sampling
  (Metropolis) of 
  3N⋅(2P+1) degree
  of freedom
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Our “exact” tool:
Projector QMC: from SWF to SPIGS

• SWF: single (variationally optimized)
projection step of a Jastrow wave
function

Vitiello, Runge, Kalos, Phys.Rev.Lett. 60, 1988

– Implicit correlations (all orders)
– Bose symmetry preserved

• SPIGS: “exact” T=0 projector
method which starts from a SWF

Galli, Reatto, Mol. Phys. 101, 2003

– Notice: unlike PIMC at finite T here no
summation over permutation is necessary, this Ψ
o(R) is Bose symmetric if ΨT is symmetric
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Shadow variables
• Shadow variables are strongly correlated
Spontaneous translational broken symmetry for ρ>ρo

Crystalline order of 4He atoms induced by many-body
correlations introduced by the shadow variables

Shadow positions
4He atom positions

SWF simulation
of hcp solid 4He:
projection of the
coordinates of the
real and shadow
particles in a
basal plane for
100
MC steps

Presently SWF represents the best variational wave function of solid 4He

Lindeman ratio
SWF: 0.242(2)
Exp.: 0.263(6)



Why a trial SWF ?
Excitations in the liquid
phase turns out to be in
good agreement with
the logo
(Galli, Cecchetti, Reatto, PRL 1996;
Moroni, Galli, Fantoni, Reatto, PRB 1998)

 good agreement also in
the solid phase
(longitudinal and
transverse phonons)
(Galli, Reatto, PRL 2003;
Galli, Reatto, JLTP 2004;
Mazzi, Galli Reatto, AIP proceedings
LT24, 2006)

q [Å-1]

E(
q)

 [
K]

Single excitations

Double roton excitations



SPIGS
In principle the method is

exact,
two parameters control

convergence:
• τ/P → accuracy of the

short time propagator
• P → number of time slices

Evolution in imaginary
time of the
potential energy starting
from a good ΨT

Example

Equation of state of bulk 4He
(Aziz potential, 1979):

comparison between the SPIGS
and the DMC methods

ρ [Å-3]

E [K]

(Galli, Reatto, Mol. Phys. 101, 2003)



SPIGS: the solid phase

• Solid phase: spontaneously broken
translational symmetry

• Lindemann ratio
Exper. 0.263(6) (Burns, Isaacs PRB 55, ‘97)

 [Å]

Local density hcp lattice ρ=0.029 Å-3

ρ [Å-3]

Local density: direction ⊥ basal plane

[Å-3]

z [Å]

ρ [Å-3]

! 

| r " R |
2
/a = 0.257(4)

Center of mass kept fixed

(Galli, Reatto, Mol. Phys. 101, 2003)



Variational theory of a quantum solid
In the framework of variational theory of quantum solids the wave functions

fall in two categories:
1. Ψ has explicit translational broken symmetry, for instance by localizing

the atoms around the assumed lattice sites

(Jastrow+Nosanow)
         → Sum over permutation to get Bose Symmetry
by construction this wave function describes a commensurate solid

2. translational invariant Ψ, first example:

                                                             (Jastrow)

       Second example: Shadow Wave Function
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SPIGS versus PIGS (2D)
• Imaginary time evolution from different

trial wave function:
expectation value of the energy

• PIGS reaches convergence only
   for τ > 0.8 K-1

τ [K-1]

E 0
/N

 [
K]

E 0
/N

 [
K]

ρ [Å-2]

GFMC: Whitlock et al., PRB 38, ‘88

2D solid 4He ρ=0.765 Å-2, 
triangular lattice

(Aziz potential, 1979)



Off Diagonal Long Range Order
• The one-body density matrix:

• Momentum distribution:

• BEC  ⇔  ODLRO

• Presence of ODLRO allows to define
a local phase → NCRI
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QMC: calculation of the one-body density matrix

• One of the open polymers is
cut and the histogram of the
relative distance of the two
cut ends is computed

• We have studied
commensurate and
incommensurate solid 4He with
SPIGS: the periodic boundary
conditions forces the
structure of the solid.

• No “mixed”, only pure
estimator (exact ground state
ρ1 if τ is large enough!)
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ODLRO - Commensurate state

• ODLRO is present: n0≈5±2x10-6 at melting
and for a finite range of densities (up to
54 bars)

• No finite-size effects
• Key process is the presence of VIPs

ODLRO: 
microscopic origin

  

! 

"
1
(
r 
r ,

r 
r ') = 0 ˆ # 

+
(
r 
r ) ˆ # (

r 
r ') 0

Galli, Rossi, Reatto, Phys.Rev. B 71, 2005

  

! 

"
1
(
r 
r #

r 
r ')

  

! 

r 
r "

r 
r ' [Å]

Scaling analysis ρ=0.029 Å-3

Snapshot of SWF trimers in a basal plane

Local maxima

SWF results: ODLRO in commensurate solid 4He



(S)PIGS: Permutation sampling
• projection procedure preserves the Bose
symmetry if ΨT is Bose symmetric

• No topological sampling problems
• It is important for off-diagonal
properties in the solid phase
• Sampling scheme: Boninsegni JLTP (2005)
• also “swap” moves allowed in off-
diagonal calculations

Off-diagonal calculation:
frequency of an accepted

permutation cycle with N polymers

N

f

hcp solid 4He, ρ=0.0293 Å-3

Frequency of an accepted permutation
cycle is only about 5 times lower
than in the liquid phase

y

x x

y

y y

xx



One-body density matrix: SPIGS results
• Calculations of the one-

body density matrix in hcp
solid 4He at melting
density ρ=0.0293 Å-3 with
SPIGS

• Pair-product
approximation: δτ=(40 K)-1

• Sampling along nearest
neighbour direction

• Plateau dramatically
reduced by the projection
procedure

• Presently we can give only
an upper bound: n0<2.5x10-8

• Calculation with larger τ
are under way

• What is missing in SWF?

ODLRO - Commensurate state

|r-r’| [Å]

ρ 1
(|r

-r
’|)

“half” polymers

basal plane hcp lattice

WORM

PIMC

τ=0.1 K-1

τ=0.175 K-1

τ=0.25 K-1



ODLRO - Commensurate state
One-body density matrix in 2D: SPIGS results

|r-r’| [Å]

ρ 1
(|r

-r
’|)

PIGS from NOSANOW
τ=0.775 K-1

τ=0 K-1: SWF

τ=0.175 K-1

τ=0.375 K-1

2D solid 4He ρ=0.765 Å-2, triangular lattice

“half” polymers

• Calculations of the one-
body density matrix in 2D
solid 4He above meltin
density ρ=0.765 Å-2 with
SPIGS

• Sampling along nearest
neighbour direction

• Pair-product
approximation: δτ=(40 K)-1

• Plateau dramatically
reduced by the projection
procedure

• Convergence to exponential
decaying tail in agreement
with result from PIGS with
Nosanow wave function



Incommensurate solid, SPIGS results:
ODLRO in solid 4He with vacancies

• 1 vacancy and 107
atoms

• Sampling along
nearest neighbors
direction

• fcc  ρ=0.031 Å-3

P=54 bars
pair-product
approximation
δτ=(40 K)-1

• ODLRO is still
present with SPIGS

SWF (τ=0) SPIGS τ=0.025 K-1

SPIGS τ=0.075 K-1 SPIGS τ=0.125 K-1

(Galli, Reatto, PRL 2006)

ODLRO - Incommensurate state



Latest results of ODLRO in hcp 4He with vacancies
at melting density

ODLRO - Incommensurate state

Number of particles N = 287

BEC fraction: 
n0 ≈ 5 x 10-4

BEC fraction 
per vacancy:
 n0

(v) = 0.144

|r-r’| [Å]

ρ 1
(|r

-r
’|)

Fixed vacancy
concentration:
Xv=1/287
ρ=0.0293 Å-3

Number of particles N = 574

No remarkable effect on n0 by
enlarging the system with fixed Xv

SPIGS τ=0.125 K-1



Multiple vacancies:
unbound state or phase separation?

It has been stated that 3 vacancies form a tight
bound state (Boninsegni et al., PRL 2006) and

multiple vacancies give phase separation

Our results: study of 1,2 and 3 vacancies at fixed 
concentration of vacancies Xv=1/179

16.4±0.8 K,    31.5±1.5 K,           43.0±2.0 K
               2 x (15.75±0.75)      3 x (14.33±0.67)

•  Vacancy activation energies seem compatible with a small
attractive interaction (0.3-0.7 K) between vacancies

Computation for hcp at ρ=0.0293Å-3

    
Vacancy 
activation energy:



Multiple vacancies: unbound state or phase separation?

• vacancy-vacancy correlation function
gvv(r) for a system of 3 vacancies

• gvv: plateau at large distances
• gvv: depression at small
distance when system gets
larger

Conclusion:
2 and 3 vacancies do not
form a bound state

Notice for simulators: very long MC runs are needed

Computation for hcp at ρ=0.0293Å-3

  

r [Å]

g v
v(r

)

Probability P to find 
vacancies at distance < r

P

r [Å]

τ=0.25 K-1



SPIGS: Vacancy-vacancy interaction
• Recently we have started a systematic study of the interaction

between vacancies also in presence of 3He impurities:

• Attractive interaction is again evident
• No particular effect of 3He on the interaction between vacancies
• The vacancy moves freely: no evidence of bound state with 3He

atoms

87.1±0.5
(-19.9)

73.6±0.4
(-12.0)

58.9±0.4
(-5.3)

41.6±0.2
(-1.2)

21.4±0.44He + 1 3He

89.3±0.5
(-17.2)

73.0±0.4
(-12.2)

56.9±0.6
(-7.0)

40.6±0.6
(-2.0)

21.3±0.4pure 4He

∆e5v [K]∆e4v [K]∆e3v [K]∆e2v [K]∆e1v [K]
ρ=0.031 Å-3

Commensurate
crystal N=180



Is the ground state of bulk solid 4He
commensurate or incommensurate?

• Early theoretical works were based on the assumption
of zero-point vacancies (Andreev and Lifshitz, JETP 93 1969;
Chester, Phys.Rev.A 2 1970)

• If ground state vacancies are present this will have
significant effects on low T behavior of solid 4He

    (phenomenological theory by P.W. Anderson, et al. Science 310 2005)

• Naive answer: it is commensurate because computation
of             for the perfect solid with one vacancy
allowed to estimate a vacancy formation energy Δev>0

• This argument is not conclusive: one has deduced Δev
from computation of the ground state energy of two
different systems, Δev is a derived quantity as an
estimate of the extra energy due to the presence of
one additional vacancy
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Example of computation of Δev
• System 1: commensurate state

108 atoms in a cubic box of volume V with
periodic boundary conditions in which fcc lattice
fits exactly

• System 2: incommensurate state
107 atoms in the same box

Evolution in imaginary time τ starting from a fully optimized SWF

δτ=(80K)-1

P=5 P=7 P=11 P=15

Incommensurate crystal
(1 vacancy, N=107)

Commensurate crystal,
N=108, ρ=0.031 Å-3

Local density      has 108 maxima
⇒ no sities = no atoms
       108         108

Local density      has 108 maxima
⇒ no sities ≠ no atoms
       108         107
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Both wave functions are non negative and represent two ground
states: depending on N and box shape the ground state for this
small system with pbc is commensurate or incommensurate



Commensurate or incommensurate?
Commensuration effects in small system makes difficult to answer this

question, one has to analyze an extended system of N  particles in a
volume V so large that boundary conditions have a negligible role

⇒ Similar to what one has to do to treat vacancies in a classical system

Consider translational invariant wave functions
I Example: Jastrow wave function
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Ground state averages with |ΨJ|2 → N classical particles at β*=1/kT* and with
pair potential v*(r) such that β*v*(r)=u(r)
Normalization constant QN → canonical configurational partition function of this

     classical system
From analysis of QN of a classical solid → the lowest free energy corresponds
to a state with a finite concentration                          of vacancies

(old argument by Chester)

  

! 

X 
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= (M - N ) / N

M: no lattice sites
N: no particles

Consequence for the quantum system: ΨJ of an extended
system has a finite concentration of vacancies

Normalization constant:

(Swope, Andersen, PRB 46, ‘92)



• Schematic landscape of probability
distribution at high density
(similarity with probability in
configuration space of suitable
classical particles)

• For a Jastrow wave function the
overwhelming contribution to
normalization QN comes from pockets
with vacancies (finite concentration!)

• Conclusion: ΨJ has a finite BEC
(Reatto, Phys.Rev. 183, 1969) and a
finite concentration of vacancies

• Hodgdon and Stillinger (1995) have estimated this vacancy concentration;
we have computed Xv with an accurate quantitative method:

        vacancy concentration       ≈ (1.4 ± 0.1) 10-6

• Standard MC computation for a small system: implicit normalization of Ψ0
only in a single pocket, computed energy is biased by the choice of N and
cell geometry (QN in a Monte Carlo computation is never computed)

• ΨJ is unrealistic for solid 4He, so this     is not very significant

Liquid pocket

Commensurate
crystal pocket

crystal with 1
vacancy pocket

crystal with 2
vacancies pocket

“configuration coordinates”
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• Classical interpretation:
normalization of ΨSWF coincides with
the configurational partition function of
a classical system of suitable flexible
triatomic molecules

Previous discussion can be extended to
this classical molecular solid

⇒ ΨSWF describes a quantum solid with
vacancies and BEC

Computation of     for SWF:
at melting        = 1.4(1)x10-3

• With m*=0.35mHe TBEC=11.3(Xv)2/3≈0.14 K
• Xv(τ) computed with SPIGS as τ→∞?

Classical analogy

N atoms

N triatomic
molecules

SWF:

Liquid pocket

Commensurate
crystal pocket

crystal with 1
vacancy pocket

crystal with 2
vacancies pocket

Commensurate or incommensurate?
II Example: Shadow wave function
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dpbc=L/3

Starting configuration

Properties at grain boundaries

Intergrain width σ ≈ 9 Å
Preliminary results: τ=0.125 K-1

Grain boundary obtained by rotation
inside the basal plane by θ≈13°

Grain boundaries has high mobility
Study of correlations:

dpbc ≈ L/2

After about 60000 MC steps
Top view

N=456 4He atoms

Evidence of coherent recrystallization waves



Properties at grain boundaries
Grain boundary obtained by rotation
inside the basal plane by θ≈13°

Interfacial energy:

0.261±0.005

-

-

-

EI + 4 vac.(KÅ-2)

0.418±0.005

0.325±0.008

0.250±0.005

-

EI + 2 vac.(KÅ-2)

0.482±0.0060.546±0.0051420.0353

0.366±0.0080.406±0.008880.0333

0.283±0.0040.305±0.004540.0313

0.244±0.0060.269±0.008400.0303

EI + 1 vac.(KÅ-2)EI (KÅ-2)P (bars)ρ (Å-3)

• at the lowest density EI < 2 ELC  being ELC the liquid-
crystal surface energy -> stability at phase coexistence
• Vacancies are easily adsorbed into the grain boundaries,
relaxing the mechanical stress
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EGB: energy system with grains
Ec: energy commensurate system



Off-diagonal properties at grain boundaries

One body density matrix in the grain
boundary: ODLRO is present, n0=2.8 10-5

ρ 1
(|r

-r
’|)

|r-r’| [Å]

Top view; N=912 4He atoms ρ=0.0313 Å-3

Preliminary results: τ=0.125 K-1

Commensurate solid

At grain boundaries



Conclusions
Our main results for hcp 4He at T=0 KT=0 K
A. Is the ground state of bulk solid 4He commensurate or

incommensurate?
• The best variational wave function (SWF) gives an incommensurate state,

with Xv = 0.14 ± 0.01 % at melting
B. Multiple vacancies do notdo not form a bound state

in disagreement with PIMC results
C. ODLRO-BEC in the incommensurate solid

• BEC is present, for the “exact” ground state no≈ 0.14 per vacancy at the
melting density

D. ODLRO-BEC in the commensurate solid
• “Exact” ground state path integral (SPIGS):  at present we can only give a

(very low) upper bound: n0 < 2.5 10-8 at melting
• In 2D evidence for exponential decay of the one-body density matrix

E. ODLRO-BEC in a grain boundary
preliminary results indicate that high symmetry grain boundary has a finite n0
Evidence of coherent recrystallization waves



SWF & SPIGS: test on
long-range contributions

• Zero-point motion of long-wavelength
phonons induces in the wave function
long-range r-2 correlations
(Reatto, Chester, Phys.Rev. 155, 1967)

We have performed two SPIGS
computations, one starting from a SWF
with the long range r-2 tail and one
starting from a SWF without this long
range.
Both SPIGS computations converge to
the same result.

• Small effect on the ODLRO in the
commensurate solid (fcc, ρ=0.029 Å-3):
n0=(2.5±1.0)x10-6 (SWF no long-range)
n0=(4.1±1.4)x10-6  (SWF)

S(q)

q [Å-1]

S(q)

q [Å-1]

liquid



• Ground state energy per particle of a truly macroscopic
system: eG=EG/N

• Energy per particle from the simulation of a
commensurate state: e0=E0/N

• Total energy from the simulation of an  incommensurate
state with one vacancy: E1=E0+Δev

• Estimated ground state energy per particle for the
macroscopic system

eG=e0+XvΔev

where Xv is the average concentration of vacancies as
computed from QN

• At melting the best energy of a wave function with
localizing factors is 0.056 K per atom above SWF

⇒ allowing for XvΔev , SWF are still the best for any
Xv<0.8% (Δev≈7K at fixed lattice parameter)



• The concentration of point defects in a quantum solid can be computed
exploiting the well known quantum-classical isomorphism
[J.A. Hodgdon and F.H. Stillinger, J. Stat. Phys. 78, 117 (1995)]

• The concentration of vacancies in a classical solid can be obtained by a
thermodynamic analysis of the extended system in the grand canonical
ensamble and it is given by

where µ is the chemical potential, f1 is the activation energy of the defect
(computed at fixed lattice spacing) and β = 1/kBT
[S.Pronk and D. Frenkel, J. Chem. Phys. 105, 6722 (2001)]

• f1 and µ can be computed in a standard canonical MC simulation adapting the
Frenkel-Ladd method [D. Frenkel and A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984); J.M.
Polson, E. Trizac, S. Pronk and D. Frenkel, J. Chem. Phys. 112, 5339 (2000)] to compute
the free energy of a polymeric solid. This method is a particular case of
Thermodynamic Integration in which the reference state is an Einstein crystal
and the thermodynamic parameter involved is a coupling parameter artificially
introduced.

How to compute the vacancy concentration in MC simulations

( )1f
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Our variational tool:
Shadow Wave Function

Evolution of Vitiello, Runge and Kalos, Phys. Rev. Lett. 60, 1970 (‘88)
Ψ Includes many particle correlations via coupling to

subsidiary variables
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Direct explicit
Jastrow correlations

Indirect coupling via 
subsidiary (shadow) variables

Particles coordinates:

Shadow variables:

Jastrow terms:

  

! 

R =
r 
r 
1
,..,

r 
r 

N
{ }

  

! 

S =
r 
s 
1
,..,

r 
s 

N
{ }

! 

"
r
(R), "

s
(S)

  

! 

K(R,S) = e
"C

r 
r 
i
"

r 
s 

i

2

i

N

#



SWF functional form
• The SWF functional form can be interpreted as a first projection step in

imaginary time of a Jastrow trial wave function ψJ with a propagator G in
the primitive approximation:

The whole functional form is variationally optimized
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SWF technique
• Expectation value of a diagonal operator:

• Integrals (over subsidiary and real variables) are
computed with Metropolis  Monte Carlo

• Equivalent to a canonical average for a classical
system of special interacting flexible tri-atomic
molecules:
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Imaginary short-time propagators

•  Primitive:
(bad for 4He)

• 4th order “Suzuki-Chin” (for 4He accurate if δτ≈10-3 K-1)
(Chin, Phys.Lett.A 226, 1997):

•  Pair-product (for 4He accurate when δτ≈10-2 K-1)
(for a review Ceperely, Rev.Mod.Phys. 67, 1995):

where              is obtained by imposing that               is exact for N=2
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Accurate up to
terms of order δτ2:
one assumes
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The SPIGS method
• Correlations:

• Metropolis sampling:
– Multilevel moves: bisection
– Rigid translation of the polymers
– Single particle moves
– Sampling of permutation is not necessary:
SWF is Bose-symmetric
– Verlet neighbour list

j-particle

i-particle

Galli, Reatto, Mol. Phys. 101, 2003
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Commensurate crystal
SWF results: ODLRO in a basal plane

• We have computed the one-body density matrix in a
basal plane of an hcp solid and along a single axis
(n.n. direction)

• ODLRO is present and it is anisotropic only in the
middle range 3-14 Å

• Good agreement with the result obtained by sampling
in one dimension (n.n. direction)   
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ODLRO - Commensurate state



τ [K-1]

E 0
/N

 [
K]

PIGS from Nosanow
δτ=1/160 K-1

PIGS from Nosanow
δτ=1/320 K-1

SPIGS
δτ=1/160 K-1

SPIGS
δτ=1/320 K-1

fcc solid 4He, ρ=0.0313 Å-3, N=32

PIGS versus SPIGS
• Imaginary time evolution from different trial wave

function: expectation value of the energy

• Convergence of diagonal operators with
both wave functions is already obtained at τ=0.2 K-1


