Recent Progress in Many-Body Theories, Barcelona, Spain, July 16-20, 2007

NBT14 Microscopic Studies of the Ground State of solid ⁴He with Path Integral Projector Monte Carlo

Sede centrale: facciata lungo largo Richini

Sede centrale: cortile del Richin

D.E. Galli

Dipartimento di Fisica, Università degli Studi di Milano

Coworkers

Luciano Reatto

Maurizio Rossi

Ettore Vitali

Riccardo Rota

Filippo Tramonto

Outline

- Introduction: supersolid, some basic questions for many body theory
- Some special properties of solid ⁴He
- Zero point motion
- Vacancy-interstitial pairs
- Vacancy waves
- Microscopic theories: T=0 K and T>0 K methods
 - Points of agreement, points of disagreement
- - **Theoretical tools at T=O K** Variational Shadow Wave Function (SWF)
 - "exact" Shadow Path Integral Ground State (SPIGS)
- One-body density matrix:
 - Study of ODLRO in a commensurate crystal
 - Variational result (SWF)
 - Exact result in 3D and 2D (SPIGS)
 - Study of ODLRO in a crystal with vacancies (incommensurate crystal)
 - Variational result (SWF)
 - "Exact" result (SPIGS)
- Multiple vacancies: stable or unstable?
- Ground state: commensurate or incommensurate?
 - Variational results for concentration of ground state vacancies
- ODLRO at grain boundaries
- Conclusions

SUPERSOLID STATE

A quantum solid (4He) with some sort of superfluid properties like non classical moment of inertia, BEC

Theoretical works ante Kim-Chan experiments (2004)

A. Possible presence of vacancies in the ground state (Andreev and Lifshitz 1969)

- B. Model wave functions exist with crystalline order, a finite concentration of vacancies and a finite BEC (Chester 1970, stimulated by proof (Reatto 1969) that a Jastrow wf has BEC)
- C. Non classical rotation of a quantum solid; rigidity of wave function: ρ_s/ρ >0 if local density $\rho(r)$ >0 (Leggett 1970)
- D. ...work by Saslow, Guyer,...

••••

- M. proof that a SWF wf has BEC (Reatto, Masserini, PRB 1988)
- ••••
- Z. Microscopic computation of the condensate induced by vacancies in solid ⁴He from variational theory (Galli-Reatto, JLTP 2001)

Supersolid State

- If Off Diagonal Long Range Order (ODLRO) is present we expect some superfluid phenomena
- State with LRO+ODLRO

Behavior of the

one-body density matrix

 $\rho^{(1)}(\vec{r}',\vec{r}) = \left\langle \hat{\Psi}^{+}(\vec{r}')\hat{\Psi}(\vec{r}) \right\rangle$ $\rho^{(1)}(\vec{r},\vec{r}) = \text{Local density at } \vec{r}$

- $\bullet\,$ Theory indicates that this must happen somewhere (use a Jastrow or a SWF, which both have LRO+ODLRO, to define \hat{H})
- There is now solid evidence that Bose Hubbard model on a lattice can show LRO+ODLRO, in ⁴He however the lattice is self-built by the atoms

Experiments (1)

Experimental search of the supersolid state in '70 and '80 has been unsuccessful

920

880

870

BREAKTHROUGH

Kim and Chan find non classical rotational inertia (NCRI) in

- ⁴He in vycor (Nature, Jan. 2004)
- ⁴He in porous gold (JLTP, Febr. 2005)
- ⁴He bulk (Science, Sept. 2004)

Superfluidity of bulk crystalline ⁴He is the correct explanation?

Experiments (2)

Supersolid behavior in torsional oscillator experiments in other laboratories (results reported at workshop "Physics of supersolid and related topics", Keio University, April 2007)

- Rittner-Reppy (Cornell) find NCRI, signal goes below detection level after suitable annealing, in bad quality samples $\rho_{\rm s}/\rho$ as large as 20% is found
- Shirahama and collaborators (Keio Un.) find NCRI, ρ s is one order of magnitude smaller compared to the PSU results
- Penzeyv and Kubota (ISSP, Un. Tokyo) find NCRI for a solid under DC rotation , no dependence on the angular velocity
- Kojima (Rutgers) find NCRI , measurements on the same sample at two different frequencies: results in disagreement with classical glass model (Nussinov)

Other measurements

- Beamish and coworkers experiment (PRL 2005 and 2006) rules out some possible alternative explanations, on the other hand they see no pressure-induced flow in the pores
- Balibar and coworkers (Science 2006) find superflow in solid ⁴He at coexistence with liquid only when grain boundaries are present, it seems likely that this phenomenon is distinct from the NCRI

• Kim and Chan find an excess specific heat below 100 mK, a broad peak at \approx 75 mK, present also for $x_{3He} \approx 10^{-9}$

Comments:

- no doubt that the NCRI is strongly dependent on some sort of defects (unlikely grain boundaries, perhaps dislocations)
- classical explanations (relaxation mechanism, glass) are incompatible with experiments
- overall picture is still confused

Some basic questions for Many-Body Theory

 Is the ground state of ⁴He commensurate or is it incommensurate?

Commensurate: n^0 of atoms = n^0 of sites

Incommensurate: n^0 of atoms $\neq n^0$ of sites

- in other words: are ground state vacancies present? (interstitials seem less likely)
- Does a commensurate solid ⁴He have ODLRO?
- Is ODLRO present only if some sort of disorder (vacancies, grain boundaries,...) exists either as equilibrium or as metastable states?

Only microscopic MB theories are able to answer such questions

Microscopic theories based on Monte Carlo simulations

- Finite temperature:
 - Path Integral Monte Carlo (PIMC)
 - Worm Algorithm PIMC (add an open polymer in the picture)

• Ground state:

- Variational theory (Jastrow, Jastrow-Nosanow, Shadow wave function)
- "exact" projection methods (Diffusion MC, Path Integral Ground State (PIGS), Shadow PIGS,...)

Present status:

points of agreement and points of disagreement are present between the two approaches

Finite temperature (T≥0.1 K) PIMC results

(Ceperley and coll.; Prokof'ev and coll.)

- The commensurate state of solid ⁴He (3D) is an "insulator": n_=0, $\rho_{\rm s}$ =0
- Only in presence of extrinsic disorder (generic grain boundaries, walls, dislocations) one has supersolid behavior ($n_0 \neq 0$, $\rho_s \neq 0$)
- Multiple vacancies form a bound state (Prokof'ev and coll.)
- Interpretation of PIMC results (Prokof'ev and coll.)
 - $\bullet\,$ The ground state of solid ⁴He is commensurate, no vacancies at low T

Ground state	Variational theory (SWF)	"Exact" T=0 K states (SPIGS)
Multiple vacancies	unbounded	unbounded
Commensurate or incommensurate?	incommensurate	incommensurate, but $\tau \rightarrow \infty$?
Commensurate state	n _o ≠0	undecided yet (n ₀ ≤ 2.5x10 ⁻⁸)
Incommensurate state	n _o ≠0	n _o ≠0
Grain boundaries, walls	n _o ≠0	n _o ≠0

Solid ⁴He: some important aspects

- Bragg scattering → translational broken symmetry (LRO)
- Very large Lindeman ratio at low density:

An atom has a 40% probability to be closer to the border of the Wigner Seitz cell than to the center of the cell

- Solid helium is a very soft solid
- One can grow almost perfect crystals (but it is not easy): large single crystal with very few dislocations

Vacancy-interstitial pairs (VIPs)

Evidence from theory

- Even in a commensurate state (n° lattice sites = n° atoms) one finds the presence of vacancy-interstitial pairs (VIPs)
- These VIPs are not excitations but simply fluctuations of the lattice; they are part of the large zero-point in the ground state of the solid
- The term "pairs" is used to underline the origin of these zero-point processes.
- Are VIPs unbound?

Yes for SWF variational theory Not clear yet for exact ground state

 (SPIGS) VIP frequency: ≈1 every 10³ MC steps with 180 ⁴He atoms ⇒ X_{vip}≈5.6x10⁻⁶

hcp basal plane ρ =0.029 Å⁻³

vacancy excitation spectrum (SWF result)

• Band width decreases at larger density

The results are variational, exact results are not yet available

crystal

Projector QMC methods: Path Integral Ground State Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

Path Integral representation of the propagator: $e^{-\tau \hat{H}} = \left(e^{-\frac{\tau}{P}\hat{H}}\right)^{P}$

$$\Psi_0(R) = \lim_{\tau \to \infty} \int dR_1 \cdots dR_P \left\langle R \left| e^{-\frac{\tau}{P}\hat{H}} \right| R_P \right\rangle \times \cdots \times \left\langle R_2 \left| e^{-\frac{\tau}{P}\hat{H}} \right| R_1 \right\rangle \Psi_T(R_1)$$

First approximation: finite imaginary time propagation

$$\Psi_0(R) \cong \int dR_1 \cdots dR_P \left\langle R \left| e^{-\frac{\tau}{P}\hat{H}} \right| R_P \right\rangle \times \cdots \times \left\langle R_2 \left| e^{-\frac{\tau}{P}\hat{H}} \right| R_1 \right\rangle \Psi_T(R_1)$$

Second approximation: the exact propagator is not known, short time approximation with $\delta \tau = \tau/P \ll 1$ (es. pair-product)

Path Integral Ground State (PIGS) wave function, Ψ_τ :

$$\Psi_{\tau}(R) = \int \left[\prod_{j=1}^{P} dR_{j} G(R_{j+1}, R_{j}, \frac{\tau}{P})\right] \Psi_{T}(R_{1})$$

TEST of convergence in τ ($\tau \rightarrow \infty$) and accuracy of G ($\delta \tau \rightarrow 0$)

Projector QMC methods: Path Integral Ground State Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

• Classical-Quantum mapping:

$$\frac{\left\langle \Psi_{0} \left| \hat{O} \right| \Psi_{0} \right\rangle}{\left\langle \Psi_{0} \left| \Psi_{0} \right\rangle} \cong \int \prod_{i=1}^{2P+1} dR_{i} \ \hat{O}(R_{P+1}) \underbrace{\left\{ \Psi_{T}(R_{1}) \prod_{j=1}^{2P} G(R_{j}, R_{j+1}, \frac{\tau}{P}) \Psi_{T}(R_{2P+1}) \right\}}_{\left\langle \tilde{\Psi}_{0} \left| \tilde{\Psi}_{0} \right\rangle}$$

Ground state averages are equivalent to canonical averages of a classical system of special interacting linear polymers:

- P projections: linear polymers with 2P+1 atoms
- Monte Carlo sampling (Metropolis) of 3N·(2P+1) degree of freedom

 $\vec{r}_{i=1,N}^{l=1,2P+1}$ \leftarrow imaginary time particle

 \Rightarrow The whole imaginary-time evolution is sampled at each Monte Carlo step

Our "exact" tool: Projector QMC: from SWF to SPIGS

 SWF: single (variationally optimized) projection step of a Jastrow wave function

Vitiello, Runge, Kalos, Phys.Rev.Lett. 60, 1988

 $\Psi_T^{SWF}(R) = \int dS \ F(R,S) \ \Psi_T(S)$

- Implicit correlations (all orders)
- Bose symmetry preserved
- SPIGS: "exact" T=0 projector method which starts from a SWF
 Galli, Reatto, Mol. Phys. 101, 2003

$$\Psi_{0}(R) = \int dR_{1}..dR_{p} dS \left\langle R \left| e^{-\frac{\tau}{p}\hat{H}} \right| R_{p} \right\rangle \times ...$$
$$\cdots \times \left\langle R_{2} \left| e^{-\frac{\tau}{p}\hat{H}} \right| R_{1} \right\rangle F(R_{1},S) \Psi_{T}(S)$$

- Notice: unlike PIMC at finite T here no summation over permutation is necessary, this $\Psi_{o}(R)$ is Bose symmetric if Ψ_{τ} is symmetric

Calculation of $ig \langle \Psi_0 ig | \hat{O} ig | \Psi_0 ig
angle$ Classical analogy N triatomic molecules N atoms SWF SPIG N open polymers

The whole imaginary time evolution is sampled at each MC step

Shadow variables

Shadow variables are strongly correlated
 Spontaneous translational broken symmetry for ρ>ρ_o
 Crystalline order of ⁴He atoms induced by many-body correlations introduced by the shadow variables

SWF simulation of hcp solid ⁴He: projection of the coordinates of the real and shadow particles in a basal plane for 100 MC steps

- Shadow positions
- ⁴He atom positions

Lindeman ratio SWF: 0.242(2) Exp.: 0.263(6)

Presently SWF represents the best variational wave function of solid ⁴He

Why a trial SWF ?

Excitations in the liquid phase turns out to be in good agreement with the logo (Galli, Cecchetti, Reatto, PRL 1996; Moroni, Galli, Fantoni, Reatto, PRB 1998) good agreement also in the solid phase (longitudinal and transverse phonons) (Galli, Reatto, PRL 2003; Galli, Reatto, JLTP 2004; Mazzi, Galli Reatto, AIP proceedings LT24, 2006)

SPIGS (Galli, Reatto, Mol. Phys. 101, 2003)

SPIGS: the solid phase

(Galli, Reatto, Mol. Phys. 101, 2003)

- Solid phase: spontaneously broken translational symmetry
- Lindemann ratio $\sqrt{|r-R|^2}/a = 0.257(4)$ Exper. 0.263(6) (Burns, Isaacs PRB 55, '97)

Variational theory of a quantum solid

In the framework of variational theory of quantum solids the wave functions fall in two categories:

1. Ψ has explicit translational broken symmetry, for instance by localizing the atoms around the assumed lattice sites $\{\vec{R}_i\}$ particle

$$\Psi(\vec{r}_1,..,\vec{r}_N) = \Psi_J \times \prod_i^N e^{-C\left|\vec{r}_i - \vec{R}_i\right|^2}$$
(Tastrow+Nosanow)

 \rightarrow Sum over permutation to get Bose Symmetry

by construction this wave function describes a commensurate solid

2. translational invariant Ψ , first example:

$$\Psi_J(\vec{r}_1,...,\vec{r}_N) = \prod_{i < j}^N f\left(\left|\vec{r}_i - \vec{r}_j\right|\right) \quad \text{(Jastrow)}$$

Second example: Shadow Wave Function

SPIGS versus PIGS (2D)

• Imaginary time evolution from different trial wave function: expectation value of the energy

2D solid ⁴He ρ =0.765 Å⁻²,

triangular lattice

Off Diagonal Long Range Order

• The one-body density matrix:

 $\rho_1(\vec{r},\vec{r}') = \left\langle 0 \middle| \hat{\Psi}^+(r) \hat{\Psi}(r') \middle| 0 \right\rangle = N \int dr_2 \cdots dr_N \Psi_0^*(r,r_2,\cdots,r_N) \Psi_0(r',r_2,\cdots,r_N)$

• Momentum distribution:

$$n(\vec{k}) = V^{-1} \int d\vec{r} \, d\vec{r}' \, \rho_1(\vec{r}, \vec{r}') e^{i\vec{k} \cdot (\vec{r} - \vec{r}')}$$

- BEC \Leftrightarrow ODLRO $\lim_{|\vec{r}-\vec{r}'| \to \infty} \rho_1(\vec{r},\vec{r}') = \rho n_0$ $n(\vec{k}) = (2\pi)^3 \rho n_0 \delta(\vec{k}) + n'(\vec{k})$
 - Presence of ODLRO allows to define a local phase → NCRI

QMC: calculation of the one-body density matrix $\rho_1(\vec{r},\vec{r}') = N \int dr_2 \cdots dr_N \Psi_0^*(\vec{r},\vec{r}_2,\cdots,\vec{r}_N) \Psi_0(\vec{r}',\vec{r}_2,\cdots,\vec{r}_N)$

- One of the open polymers is cut and the histogram of the relative distance of the two cut ends is computed
- We have studied commensurate and incommensurate solid ⁴He with SPIGS: the periodic boundary conditions forces the structure of the solid.
- No "mixed", only pure estimator (exact ground state ρ₁ if τ is large enough!)

ODLRO - Commensurate state

SWF results: ODLRO in commensurate solid ⁴He

ODLRO:

microscopic origin

 $\rho_1(\vec{r},\vec{r}') = \left\langle 0 | \hat{\Psi}^+(\vec{r}) \hat{\Psi}(\vec{r}') | 0 \right\rangle$

Galli, Rossi, Reatto, Phys.Rev. B 71, 2005

- ODLRO is present: n₀≈5±2×10⁻⁶ at melting and for a finite range of densities (up to 54 bars)
- No finite-size effects

(S)PIGS: Permutation sampling

 \bullet projection procedure preserves the Bose symmetry if Ψ_{τ} is Bose symmetric

• No topological sampling problems

- It is important for off-diagonal properties in the solid phase
- Sampling scheme: Boninsegni JLTP (2005)
- also "swap" moves allowed in offdiagonal calculations

Off-diagonal calculation:

frequency of an accepted permutation cycle with N polymers

than in the liquid phase

ODLRO - Commensurate state One-body density matrix: SPIGS results

- Calculations of the onebody density matrix in hcp solid ⁴He at melting density ρ=0.0293 Å⁻³ with SPIGS
- Pair-product approximation: δτ=(40 K)⁻¹
- Sampling along nearest neighbour direction
- Plateau dramatically reduced by the projection procedure
- Presently we can give only an upper bound: n₀<2.5x10⁻⁸
- Calculation with larger $\boldsymbol{\tau}$ are under way
- What is missing in SWF?

ODLRO - Commensurate state One-body density matrix in 2D: SPIGS results

- Calculations of the onebody density matrix in 2D solid ⁴He above meltin density $\rho\text{=}0.765$ Å^-2 with SPIGS
- Sampling along nearest neighbour direction
- Pair-product approximation: $\delta \tau = (40 \text{ K})^{-1}$
- Plateau dramatically reduced by the projection procedure
- ρ₁(lr-r']) Convergence to exponential decaying tail in agreement with result from PIGS with Nosanow wave function

ODLRO – Incommensurate state

Incommensurate solid, SPIGS results: ODLRO in solid ⁴He with vacancies

(Galli, Reatto, PRL 2006)

- 1 vacancy and 107 atoms
- Sampling along nearest neighbors direction
- fcc ρ=0.031 Å⁻³
 P=54 bars
 pair-product
 approximation
 δτ=(40 K)⁻¹
- ODLRO is still present with SPIGS

ODLRO - Incommensurate state Latest results of ODLRO in hcp ⁴He with vacancies at melting density

Multiple vacancies: unbound state or phase separation?

It has been stated that 3 vacancies form a tight bound state (Boninsegni et al., PRL 2006) and multiple vacancies give phase separation

Our results: study of 1,2 and 3 vacancies at fixed concentration of vacancies $X_v=1/179$

Computation for hcp at ρ =0.0293Å⁻³

• Vacancy activation energies seem compatible with a small attractive interaction (0.3–0.7 K) between vacancies

Multiple vacancies: unbound state or phase separation?

SPIGS: Vacancy-vacancy interaction

• Recently we have started a systematic study of the interaction between vacancies also in presence of ³He impurities:

ρ=0.031 Å ⁻³ Commensurate crystal N=180	∆e _{1v} [K]	∆e _{2v} [K]	∆e _{3v} [K]	∆e _{4v} [K]	∆e _{5v} [K]
pure ⁴ He	21.3±0.4	40.6±0.6 (-2.0)	56.9±0.6 (-7.0)	73.0±0.4 (-12.2)	89.3±0.5 (-17.2)
⁴ He + 1 ³ He	21.4±0.4	41.6±0.2 (-1.2)	58.9±0.4 (-5.3)	73.6±0.4 (-12.0)	87.1±0.5 (-19.9)

- Attractive interaction is again evident
- No particular effect of ³He on the interaction between vacancies
- The vacancy moves freely: no evidence of bound state with ³He atoms

Is the ground state of bulk solid ⁴He commensurate or incommensurate?

- Early theoretical works were based on the assumption of zero-point vacancies (Andreev and Lifshitz, JETP <u>93</u> 1969; Chester, Phys.Rev.A <u>2</u> 1970)
- If ground state vacancies are present this will have significant effects on low T behavior of solid ⁴He (phenomenological theory by P.W. Anderson, et al. Science <u>310</u> 2005)
- Naive answer: it is commensurate because computation of $\langle \Psi_0 | \hat{H} | \Psi_0 \rangle$ for the perfect solid with one vacancy allowed to estimate a vacancy formation energy $\Delta e_v > 0$
- This argument is not conclusive: one has deduced Δe_v from computation of the ground state energy of two different systems, Δe_v is a derived quantity as an estimate of the extra energy due to the presence of one additional vacancy

Example of computation of Δe_v

Commensurate or incommensurate?

Commensuration effects in small system makes difficult to answer this question, one has to analyze an extended system of \mathcal{N} particles in a volume V so large that boundary conditions have a negligible role

⇒ Similar to what one has to do to treat vacancies in a classical system (Swope, Andersen, PRB 46, `92)

Consider translational invariant wave functions

I Example: Jastrow wave function $\Psi_J(\vec{r}_1,..,\vec{r}_N) = \prod_{i < j} e^{-\frac{1}{2}u(r_{ij})} / Q_N^{1/2}$ (old argument by Chester) Normalization constant: $Q_N = \int d\vec{r}_1 .. d\vec{r}_N \prod e^{-u(r_{ij})}$

 \mathcal{N}

Ground state averages with $|\Psi_{J}|^{2} \rightarrow N$ classical particles at $\beta^{*}=1/kT^{*}$ and with pair potential v*(r) such that $\beta^{*}v^{*}(r)=u(r)$

Normalization constant $Q_N \rightarrow$ canonical configurational partition function of this classical system

From analysis of $Q_{\mathcal{N}}$ of a classical solid \rightarrow the lowest free energy corresponds to a state with a finite concentration $\overline{X}_{\nu} = (\mathcal{M} - \mathcal{N})/\mathcal{N}$ of vacancies

Consequence for the quantum system: $\Psi_{\rm J}$ of an extended system has a finite concentration of vacancies

M: nº lattice sites N: nº particles

- Schematic landscape of probability distribution at high density (similarity with probability in configuration space of suitable classical particles)
- For a Jastrow wave function the overwhelming contribution to normalization $Q_{\mathcal{N}}$ comes from pockets with vacancies (finite concentration!)
- Conclusion: Ψ_J has a finite BEC (Reatto, Phys.Rev. <u>183</u>, 1969) and a finite concentration of vacancies

"configuration coordinates"

 Hodgdon and Stillinger (1995) have estimated this vacancy concentration; we have computed X, with an accurate quantitative method:

vacancy concentration $\overline{X}_{v} \approx$ (1.4 ± 0.1) 10⁻⁶

- Standard MC computation for a small system: implicit normalization of Ψ_0 only in a single pocket, computed energy is biased by the choice of N and cell geometry (Q_N in a Monte Carlo computation is never computed)
- Ψ_J is unrealistic for solid ⁴He, so this \overline{X}_v is not very significant

Commensurate or incommensurate?

II Example: Shadow wave function $\Psi(R) = \phi_r(R) \times \int dS K(R,S) \times \phi_s(S) / Q_{\mathcal{N}}^{\frac{1}{2}}$ $Q_{\mathcal{N}} = \int dR \, dS \, dS' \, \phi_r^2(R) K(R,S) K(R,S') \phi_s(S) \phi_s(S')$ Classical analogy SWF:

• <u>Classical interpretation</u>:

normalization of Ψ_{SWF} coincides with the configurational partition function of a classical system of suitable flexible triatomic molecules

Previous discussion can be extended to this classical molecular solid

 $\Rightarrow \Psi_{\rm SWF} \, {\rm describes} \, \, {\rm a} \, \, {\rm quantum} \, \, {\rm solid} \, \, {\rm with} \, \, {\rm vacancies} \, \, {\rm and} \, \, {\rm BEC}$

Computation of \overline{X}_{v} for SWF:

at melting $\overline{X}_{v} = 1.4(1) \times 10^{-3}$

- With m*=0.35m_{He} T_{BEC}=11.3(X_v)^{2/3}≈0.14 K
- $X_v(\tau)$ computed with SPIGS as $\tau \rightarrow \infty$?

Properties at grain boundaries

Evidence of coherent recrystallization waves

Properties at grain boundaries

Grain boundary obtained by rotation inside the basal plane by $\theta \approx 13^{\circ}$

Interfacial energy:
$$E_I = \frac{E_{GB} - E_C}{2A}$$
 E_{GB} : energy

 E_{GB} : energy system with grains E_{c} : energy commensurate system

ρ (Å- ³)	P (bars)	Ε _Ι (KÅ ⁻²)	E _I + 1 vac.(KÅ ⁻²)	E _I + 2 vac.(KÅ ⁻²)	E _I + 4 vac.(KÅ ⁻²)
0.0303	40	0.269±0.008	0.244±0.006	-	-
0.0313	54	0.305±0.004	0.283±0.004	0.250±0.005	-
0.0333	88	0.406±0.008	0.366±0.008	0.325±0.008	-
0.0353	142	0.546±0.005	0.482±0.006	0.418±0.005	0.261±0.005

- at the lowest density $E_I < 2 E_{LC}$ being E_{LC} the liquidcrystal surface energy -> stability at phase coexistence
- Vacancies are easily adsorbed into the grain boundaries, relaxing the mechanical stress

Off-diagonal properties at grain boundaries

One body density matrix in the grain boundary: ODLRO is present, $n_0=2.8 \ 10^{-5}$

Conclusions

Our main results for hcp ⁴He at T=O K

- A. Is the ground state of **bulk** solid ⁴He commensurate or incommensurate?
 - The best variational wave function (SWF) gives an incommensurate state, with $X_v = 0.14 \pm 0.01$ % at melting
- B. Multiple vacancies **do not** form a bound state

in disagreement with PIMC results

- C. ODLRO-BEC in the incommensurate solid
 - BEC is present, for the "exact" ground state n_o≈ 0.14 per vacancy at the melting density
- D. ODLRO-BEC in the <u>commensurate</u> solid
 - "Exact" ground state path integral (SPIGS): at present we can only give a (very low) upper bound: $n_0 < 2.5 \ 10^{-8}$ at melting
 - In 2D evidence for exponential decay of the one-body density matrix
- E. ODLRO-BEC in a grain boundary

preliminary results indicate that high symmetry grain boundary has a finite n_0 Evidence of coherent recrystallization waves

SWF & SPIGS: test on long-range contributions

• Zero-point motion of long-wavelength ^{1.0} phonons induces in the wave function S(q)long-range r⁻² correlations (Reatto, Chester, Phys.Rev. 155, 1967)

We have performed two SPIGS computations, one starting from a SWF with the long range r^{-2} tail and one starting from a SWF without this long range.

Both SPIGS computations converge to the same result.

• Small effect on the ODLRO in the commensurate solid (fcc, ρ =0.029 Å⁻³): n₀=(2.5±1.0)x10⁻⁶ (SWF no long-range) n₀=(4.1±1.4)x10⁻⁶ (SWF)

- Ground state energy per particle of a truly macroscopic system: $e_G = E_G / N$
- Energy per particle from the simulation of a commensurate state: $e_0 = E_0 / N$
- Total energy from the simulation of an incommensurate state with one vacancy: $E_1 = E_0 + \Delta e_v$
- Estimated ground state energy per particle for the macroscopic system

$e_{G}=e_{0}+X_{v}\Delta e_{v}$

where X_v is the average concentration of vacancies as computed from $Q_{\mathcal{N}}$

- At melting the best energy of a wave function with localizing factors is 0.056 K per atom above SWF
- ⇒ allowing for X_v∆e_v, SWF are still the best for any X_v<0.8% (∆e_v≈7K at fixed lattice parameter)

How to compute the vacancy concentration in MC simulation:

- The concentration of point defects in a quantum solid can be computed exploiting the well known quantum-classical isomorphism
 [J.A. Hodgdon and F.H. Stillinger, J. Stat. Phys. 78, 117 (1995)]
- The concentration of vacancies in a classical solid can be obtained by a thermodynamic analysis of the extended system in the grand canonical ensamble and it is given by $-\beta(u-t)$

$$X_v = e^{-\beta(\mu - f_1)}$$

where μ is the chemical potential, f_1 is the activation energy of the defect (computed at fixed lattice spacing) and $\beta = 1/k_B T$ [S.Pronk and D. Frenkel, J. Chem. Phys. 105, 6722 (2001)]

• f_1 and μ can be computed in a standard canonical MC simulation adapting the Frenkel-Ladd method [D. Frenkel and A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984); J.M. Polson, E. Trizac, S. Pronk and D. Frenkel, J. Chem. Phys. 112, 5339 (2000)] to compute the free energy of a polymeric solid. This method is a particular case of Thermodynamic Integration in which the reference state is an Einstein crystal and the thermodynamic parameter involved is a coupling parameter artificially introduced.

Our variational tool: Shadow Wave Function

Evolution of Vitiello, Runge and Kalos, Phys. Rev. Lett. 60, 1970 (`88) Ψ Includes many particle correlations via coupling to subsidiary variables

$$\Psi(R) = \phi_r(R) \times \int dS \ K(R,S) \times \phi_s(S)$$

Direct explicit Jastrow correlations Indirect coupling via subsidiary (shadow) variables

Particles coordinates $R = \left\{ \vec{r}_1, ..., \vec{r}_N \right\}$

Shadow variables $S = \left\{ \vec{s}_1, ..., \vec{s}_N \right\}$

Jastrow terms: $\phi_r(R), \phi_s(S)$ $K(R,S) = \prod_i^N e^{-C|\vec{r_i} - \vec{s_i}|^2}$

SWF functional form

• The SWF functional form can be interpreted as a first projection step in imaginary time of a Jastrow trial wave function ψ_J with a propagator G in the primitive approximation:

$$\Psi(R) = \int dS \ G(R,S) \times \psi_{J}(S) \qquad \begin{vmatrix} R = \{\vec{r}_{i},...,\vec{r}_{N}\} \\ S = \{\vec{s}_{1},...,\vec{s}_{N}\} \end{vmatrix}$$

$$= \int dS \prod_{i

$$= \int dS \prod_{i$$$$

The whole functional form is variationally optimized

SWF technique

• Expectation value of a diagonal operator:

- Integrals (over subsidiary and real variables) are computed with Metropolis Monte Carlo
- Equivalent to a canonical average for a classical system of special interacting flexible tri-atomic = molecules: \vec{s}

probability density in the extended space

 $\blacktriangleright p(R,S,S')$

 $\left\{R,S,S'\right\}$

 \Rightarrow 3N particles

Imaginary short-time propagators

• Primitive:
$$\langle R | e^{-\delta \tau (\hat{T} + \hat{V})} | R' \rangle \approx \langle R | e^{-\frac{\delta \tau}{2} \hat{V}} e^{-\delta \tau \hat{T}} e^{-\frac{\delta \tau}{2} \hat{V}} | R' \rangle$$

(bad for ⁴He)
 $\approx e^{-\frac{\delta \tau}{2} V(R)} \prod_{i=1}^{N} \frac{e^{-\frac{|\tilde{r}_i - \tilde{r}_i|^2}{4\lambda\delta \tau}}}{(4\pi\lambda\delta\tau)^{\frac{3}{2}}} e^{-\frac{\delta \tau}{2} V(R')}$

Accurate up to
terms of order $\delta \tau^2$:
one assumes $\frac{\delta \tau^2}{2} [\hat{T}, \hat{V}] = 0$
With $V(R) = \sum_{i (for ⁴He)
and $\lambda = \frac{\hbar^2}{2m}$$

4th order "Suzuki-Chin" (for ⁴He accurate if $\delta \tau \approx 10^{-3}$ K⁻¹) (Chin, Phys.Lett.A 226, 1997): $\left\langle R \middle| e^{-\delta\tau(\hat{T}+\hat{V})} \middle| R' \right\rangle \cong e^{-\delta\tau\left(\frac{2}{3}V(R)+\tilde{V}(R)\right)} \left(\prod_{i=1}^{N} \frac{e^{-\frac{\left|\vec{r}_{i}-\vec{r}_{i}'\right|^{2}}{4\lambda\delta\tau}}}{\left(4\pi\lambda\delta\tau\right)^{\frac{3}{2}}} \right) \qquad \tilde{V}(R) = \begin{cases} 0 & \text{if } R \text{ is "even"} \\ \frac{2}{3}V(R) + \frac{2\lambda\delta\tau^{2}}{9}\sum_{i=1}^{N} \left(\vec{\nabla}_{i}V(R)\right)^{2} & \text{elsewhere} \end{cases}$

Pair-product (for ⁴He accurate when $\delta \tau \approx 10^{-2}$ K⁻¹)

(for a review Ceperely, Rev.Mod.Phys. 67, 1995):

$$\left\langle R \middle| e^{-\delta\tau(\hat{T}+\hat{V})} \middle| R' \right\rangle \cong G(R,R',\delta\tau) = \prod_{i< j}^{N} e^{-u(\vec{r}_i - \vec{r}_j,\vec{r}_i' - \vec{r}_j',\delta\tau)} \prod_{i=1}^{N} \frac{e^{-\frac{\left|\vec{r}_i - \vec{r}_i'\right|^2}{4\lambda\delta\tau}}}{\left(4\pi\lambda\delta\tau\right)^{\frac{3}{2}}}$$

where $u(\vec{r},\vec{r}',\delta\tau)$ is obtained by imposing that $G(R,R',\delta\tau)$ is exact for N=2

The SPIGS method

Galli, Reatto, Mol. Phys. 101, 2003

- Multilevel moves: bisection
- Rigid translation of the polymers
- Single particle moves
- Sampling of permutation is not necessary:
- SWF is Bose-symmetric
- Verlet neighbour list

ODLRO - Commensurate state Commensurate crystal SWF results: ODLRO in a basal plane

- We have computed the one-body density matrix in a basal plane of an hcp solid and along a single axis (n.n. direction)
- ODLRO is present and it is anisotropic only in the middle range 3-14 Å

• Good agreement with the result obtained by sampling in one dimension (n.n. direction) $\rho_1(\vec{r} - \vec{r}')$

PIGS versus SPIGS

• Imaginary time evolution from different trial wave function: expectation value of the energy

