Electron Correlations in Solids: From High-Temperature Superconductivity to Half-Metallic Ferromagnetism

Enrico Arrigoni

Institute of Theoretical Physics - Computational Physics TU Graz

In collaboration with: Liviu Chioncel, Hannes Allmaier, Anna Fulterer A. Lichtenstein, M. Katsnelson, Markus Aichhorn, Werner Hanke, Michael Potthoff,..

> FWF projects n. P18505-N16, P18551-N16, DFG FOR 538

Outline of the talk

1 Introduction: Correlation in High-Temperature Superconductors

2 / 33

E. Arrigoni (ITP^{CP} / TU Graz)

Electron Correlations in Solids

RPMBT14, Barcelona 2007

Outline of the talk

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

Outline of the talk

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

Outline of the talk

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

4 Application: Half-Metallic Ferromagnets

- Nonquasiparticle states
- CrO₂
- VAs: a correlation-induced half-metal ?

Outline of the talk

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

Application: Half-Metallic Ferromagnets

- Nonquasiparticle states
- CrO₂
- VAs: a correlation-induced half-metal ?

Summary and Outlook

Introduction: Correlation in High-Temperature Superconductors

- 2) How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

- 4 Application: Half-Metallic Ferromagnets
 - Nonquasiparticle states
 - CrO_2
 - VAs: a correlation-induced half-metal ?
 - Summary and Outlook

Cu O₂ layer

E. Arrigoni (ITP^{CP} / TU Graz)

Electron Correlations in Solids

RPMBT14, Barcelona 2007 5 / 33

Cu O₂ layer

Reduced model

(e.g. Hubbard model)

$t \sim 0.5 eV$

Effective hopping strength

E. Arrigoni (ITP^{CP} / TU Graz)

-

<u>t</u>~0.5 eV

effective hopping strength

undoped compound 1 Electron per orbital

E. Arrigoni (ITP^{CP} / TU Graz)

-

half filled band -> metal ??

<u>t</u>~0.5 eV

effective hopping strength

undoped compound 1 Electron per orbital

Mott insulator !

Band energy

Graz University of Technology

Band energy

az

Band energy

Graz Graz University of Technology

Introduction: Correlation in High-Temperature Superconductors

magnetic properties

Band energy

Graz University of Technology

7 / 33

7 / 33

magnetic properties

not allowed !

due to Pauli principle

 $\Delta E = -J \qquad \text{for}(S_1 = -S_2)$

$$\Delta E = 0 \qquad \text{for}(S_1 = S_2)$$

$$J \sim t^2/U \sim 150 meV$$

Superexchange energy

7 / 33

magnetic properties

Superexchange prefers antiparallel spin configuration

Antiferromagnetism

7 / 33

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

Application: High-Temperature Superconductors: phase diagram

4 Application: Half-Metallic Ferromagnets

- Nonquasiparticle states
- CrO_2
- VAs: a correlation-induced half-metal ?
- Summary and Outlook

Appropriate numerical treatment of correlations?

1) "Exact" solution for a small cluster:

Quantum Monte Carlo Exact diagonalisation (Lanczos)

E. Arrigoni (ITP^{CP} / TU Graz)

Appropriate numerical treatment of correlations?

1) "Exact" solution for a small cluster:

Quantum Monte Carlo Exact diagonalisation (Lanczos)

Appropriate numerical treatment of correlations?

1) "Exact" solution for a small cluster:

Quantum Monte Carlo Exact diagonalisation (Lanczos)

2) Perturbative treatment of intercluster hybridizations

Cluster-perturbation theory (CPT)

(Gros,Valenti93; Senechal et al. 2000)

E. Arrigoni (ITP^{CP} / TU Graz)

Cluster Perturbation Theory (CPT)

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

11 / 33

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

Variational CPT : Treatment of symmetry-broken phases:

$$H_{cl}' = H_{cl} + h_{field}$$

11 / 33

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

Variational CPT : Treatment of symmetry-broken phases:

 $H_{cl}' = H_{cl} + h_{field}$

$$H'_{intercl} = H_{intercl} - h_{field}$$

11 / 33

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

Variational CPT : Treatment of symmetry-broken phases:

 $H'_{cl} = H_{cl} + h_{field}$ $H'_{intercl} = H_{intercl} - h_{field}$ How is h_{field} determined ?

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

Variational CPT : Treatment of symmetry-broken phases:

 $\begin{array}{ll} H'_{cl} = H_{cl} + h_{field} & H'_{intercl} = H_{intercl} - h_{field} \\ \textbf{How is} & h_{field} & \textbf{determined ?} \\ \textbf{''Minimisation'' of Grand-canonical (SFA) potential} \\ (Potthoff et al.03, Dahnken, Aichhorn, Hanke, Arrigoni, Potthoff 04) \end{array}$

E. Arrigoni (ITP^{CP} / TU Graz)

CPT: $H = H_{cl} + H_{intercl}$ $G_{CPT}^{-1} = G_{cl}^{-1} - T$

(Gros, Valenti (93), Senechal et al. (00))

Variational CPT : Treatment of symmetry-broken phases:

 $H'_{cl} = H_{cl} + h_{field} \qquad H'_{intercl} = H_{intercl} - h_{field}$ How is h_{field} determined ? "Minimisation" of Grand-canonical (SFA) potential (Potthoff et al.03, Dahken, Aichhorn, Hanke, Arrigoni,Potthoff 04)

Treatment of superconducting phase:

Senechal et al (05) Aichhorn, Arrigoni(05) $h_{SC} = \frac{\Delta}{2} \sum_{R,R'} \eta(R - R') (c_{R,\uparrow} c_{R',\downarrow} + h.c.)$, Aichhorn, Arrigoni, Potthoff, Hanke (06)

E. Arrigoni (ITP^{CP} / TU Graz)

• Many-Body Fermionic Hamiltonian:

 $H = H_0[G_0]$ (single-particle) + U (interaction)

• Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$

• The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U

• Self-energy: $\Sigma[G] = T^{-1}\delta\Phi[G]/\delta G$

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U
- Self-energy: $\Sigma[G] = T^{-1} \delta \Phi[G] / \delta G$
- Legendre transformation: $F[\Sigma] = \Phi[G[\Sigma]] Tr\Sigma G[\Sigma]$ Universal

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U
- Self-energy: $\Sigma[G] = T^{-1} \delta \Phi[G] / \delta G$

• Legendre transformation: $F[\Sigma] = \Phi[G[\Sigma]] - \text{Tr}\Sigma G[\Sigma]$ Universal

• (dressed) Green's function $G[\Sigma] = T^{-1} \delta F[\Sigma] / \delta \Sigma$

Selfenergy Functional Approach (SFA) (M. Potthoff 2003)

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U
- Self-energy: $\Sigma[G] = T^{-1} \delta \Phi[G] / \delta G$
- Legendre transformation: $F[\Sigma] = \Phi[G]$

$$\Box] = \Phi[G[\Sigma]] - \mathsf{Tr}\Sigma G[\Sigma] \quad \mathsf{Univers}$$

• (dressed) Green's function $G[\Sigma] = T^{-1} \delta F[\Sigma] / \delta \Sigma$

• Introduce the SFA Potential: $\boxed{\Omega_{G_0}[\Sigma] = F[\Sigma] + \operatorname{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1})}$

Selfenergy Functional Approach (SFA) (M. Potthoff 2003)

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U
- Self-energy: $\Sigma[G] = T^{-1} \delta \Phi[G] / \delta G$
- Legendre transformation: $F[\Sigma]$

$$[] = \Phi[G[\Sigma]] - \mathsf{Tr}\Sigma G[\Sigma]$$
 Universal

- (dressed) Green's function $G[\Sigma] = T^{-1} \delta F[\Sigma] / \delta \Sigma$
- Introduce the SFA Potential: $\Omega_{G_0}[\Sigma] = F[\Sigma] + \operatorname{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1})$
- Stationary at the exact selfenergy:

$$\delta\Omega_{G_0}[\Sigma]/\delta\Sigma = 0 \Leftrightarrow G[\Sigma] = (G_0^{-1} - \Sigma)^{-1}$$

Selfenergy Functional Approach (SFA) (M. Potthoff 2003)

- Many-Body Fermionic Hamiltonian: $H = H_0[G_0] + U$
- The Luttinger-Ward functional: $\phi[G]$ is Universal: depends only on U
- Self-energy: $\Sigma[G] = T^{-1} \delta \Phi[G] / \delta G$
- Legendre transformation: $F[\Sigma] =$

$$\mathbf{\Sigma} = \Phi[G[\mathbf{\Sigma}]] - \mathsf{Tr}\mathbf{\Sigma}G[\mathbf{\Sigma}] \quad \mathsf{Universal}$$

- (dressed) Green's function $G[\Sigma] = T^{-1} \delta F[\Sigma] / \delta \Sigma$
- Introduce the SFA Potential: $\Omega_{G_0}[\Sigma] = F[\Sigma] + \operatorname{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1})$
- Stationary at the exact selfenergy: $\delta\Omega_{G_0}[\Sigma]/\delta\Sigma = 0 \Leftrightarrow G[\Sigma] = (G_0^{-1} - \Sigma)^{-1}$

• Starting from H

• Consider a Reference system:

$$H'=H_0[G'_0]+U$$

(with the same
$$U$$
)

H' (reference syst.)

- Consider a Reference system: $|H' = H_0[G'_0] + U|$ (with the same U)

• $F[\Sigma]$ is the same for H' and H (universality)

H' (reference syst.)

- Consider a Reference system: $H' = H_0[G'_0] + U$ (with the same U)
- $F[\Sigma]$ is the same for H' and H (universality)
- However: $\Omega_{G'_0}[\Sigma]$ (and thus $F[\Sigma]$) can be evaluated exactly for H': $\Omega_{G'_0}[\Sigma] = \text{grand-canonical potential}$

- Consider a Reference system: $|H' = H_0[G'_0] + U|$ (with the same U)
- $F[\Sigma]$ is the same for H' and H (universality)
- However: $\Omega_{G'_0}[\Sigma]$ (and thus $F[\Sigma]$) can be evaluated exactly for H': $\Omega_{G'_0}[\Sigma] = \text{grand-canonical potential}$
- The exact Ω for H is then: (remember $\Omega = F + Tr \ln(-(G_0^{-1} \Sigma)^{-1}))$

$$\Omega_{G_0}[\Sigma] = \Omega_{G'_0}[\Sigma] + \mathsf{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1}) - \mathsf{Tr} \ln(-(G_0^{'-1} - \Sigma)^{-1})$$

- Consider a Reference system: $|H' = H_0[G'_0] + U|$ (with the same U)
- $F[\Sigma]$ is the same for H' and H (universality)
- However: $\Omega_{G'_0}[\Sigma]$ (and thus $F[\Sigma]$) can be evaluated exactly for H': $\Omega_{G'_0}[\Sigma] = \text{grand-canonical potential}$
- The exact Ω for H is then: $(\text{remember } \Omega = F + \text{Tr} \ln(-(G_0^{-1} \Sigma)^{-1}))$

 $\Omega_{G_0}[\Sigma] = \Omega_{G'_0}[\Sigma] + \mathsf{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1}) - \mathsf{Tr} \ln(-(G_0^{'-1} - \Sigma)^{-1})$

 Caveat: F[Σ] can be evaluated only for a restricted subspace of Σ e.g. the ones that can be obtained from the cluster (cluster local)

- Consider a Reference system: $|H' = H_0[G'_0] + U|$ (with the same U)
- $F[\Sigma]$ is the same for H' and H (universality)
- However: $\Omega_{G'_0}[\Sigma]$ (and thus $F[\Sigma]$) can be evaluated exactly for H': $\Omega_{G'_0}[\Sigma] = \text{grand-canonical potential}$
- The exact Ω for H is then: $(\text{remember } \Omega = F + \text{Tr} \ln(-(G_0^{-1} \Sigma)^{-1}))$

 $\Omega_{G_0}[\Sigma] = \Omega_{G'_0}[\Sigma] + \mathsf{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1}) - \mathsf{Tr} \ln(-(G_0^{'-1} - \Sigma)^{-1})$

- Caveat: $F[\Sigma]$ can be evaluated only for a restricted subspace of Σ
- The approximation consists in finding the optimum Σ within this subspace via $\delta\Omega_{G_0}[\Sigma]/\delta\Sigma = 0$

- Consider a Reference system: $|H' = H_0[G'_0] + U|$ (with the same U)
- $F[\Sigma]$ is the same for H' and H (universality)
- However: $\Omega_{G'_0}[\Sigma]$ (and thus $F[\Sigma]$) can be evaluated exactly for H': $\Omega_{G'_0}[\Sigma] = \text{grand-canonical potential}$
- The exact Ω for H is then: $(\text{remember } \Omega = F + \text{Tr} \ln(-(G_0^{-1} \Sigma)^{-1}))$

 $\Omega_{G_0}[\Sigma] = \Omega_{G'_0}[\Sigma] + \operatorname{Tr} \ln(-(G_0^{-1} - \Sigma)^{-1}) - \operatorname{Tr} \ln(-(G_0^{'-1} - \Sigma)^{-1})$

- Caveat: $F[\Sigma]$ can be evaluated only for a restricted subspace of Σ
- The approximation consists in finding the optimum Σ within this subspace via $\delta\Omega_{G_0}[\Sigma]/\delta\Sigma = 0$
- This corresponds to the optimisation of the grand-canonical potential discussed before

Problem: models for strongly correlated systems are much too simplified:

14 / 33

Problem: models for strongly correlated systems are much too simplified:

Effort is concentrated on the "big difficulty" electron correlations

phenomenological parameters (hopping t, interaction U)

14 / 33

Problem: models for strongly correlated systems are much too simplified:

Effort is concentrated on the "big difficulty" electron correlations

phenomenological parameters (hopping t, interaction U) vs.

Ab initio

Calculations within density-functional theory (LDA,GGA,..)

(W. Kohn, W. Kohn+ L. J. Sham ... Wien2k) often very accurate start from "first principles"

14 / 33

Problem: models for strongly correlated systems are much too simplified:

Effort is concentrated on the "big difficulty" electron correlations

phenomenological parameters (hopping t, interaction U) vs.

Ab initio

Calculations within density-functional theory (LDA,GGA,..)

(W. Kohn, W. Kohn+ L. J. Sham ... Wien2k) often very accurate start from "first principles"

However: Sometimes fail to explain some phenomena (High–Tc superc., magnetism, Mott–insul.) in which correlations are important

E. Arrigoni (ITP^{CP} / TU Graz)

Problem: models for strongly correlated systems are much too simplified:

Effort is concentrated on the "big difficulty" electron correlations

phenomenological parameters (hopping t, interaction U) vs.

Ab initio

Calculations within density-functional theory (LDA,GGA,..)

(W. Kohn, W. Kohn+ L. J. Sham ... Wien2k) often very accurate start from "first principles"

However: Sometimes fail to explain some phenomena (High–Tc superc., magnetism, Mott–insul.) in which correlations are important

Can one combine the two ideas?

yes ! Combined approach: LDA+ Dynamical Mean Field Theory

(Anisimov et al., Kotliar+Vollhardt, Held, ...)

TU

14 / 33

Graz University of Technology

E. Arrigoni (ITP^{CP} / TU Graz)

Electron Correlations in Solids

Outline

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

4 Application: Half-Metallic Ferromagnets

- Nonquasiparticle states
- CrO_2
- VAs: a correlation-induced half-metal ?

Summary and Outlook

Electron and hole-doped High-Tc Superconductors

Single-band Hubbard model U/t=8
$$t'/t = -0.3$$

Weak dependence on size of reference system (cluster)

Transition Antiferromagnetism – Superconductivity

18 / 33

Transition Antiferromagnetism – Superconductivity

Aichhorn, Arrigoni, Hanke, Potthoff (2006)

18 / 33

Aichhorn, Arrigoni, Hanke, Potthoff (2006)

Transition Antiferromagnetism – Superconductivity

Aichhorn, Arrigoni, Hanke, Potthoff (2006)

18 / 33

Evolution of single-particle spectrum vs doping

E. Arrigoni (ITP^{CP} / TU Graz)

Outline

Introduction: Correlation in High-Temperature Superconductors

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

Application: High-Temperature Superconductors: phase diagram

4 Application: Half-Metallic Ferromagnets

- Nonquasiparticle states
- CrO₂
- VAs: a correlation-induced half-metal ?

Summary and Outlook

21 / 33

Current is carried by electrons at the Fermi surface no contribution from spin down electrons!

21 / 33

Density of states

Current is carried by electrons at the Fermi surface no contribution from spin down electrons! Current is (in principle)

100% spin polarized

Half–Metallic ferromagnets: (e.g. CrO₂ NiMnSb Sr₂FeMoO₂) RA. de Groot et al. (1983)

21 / 33

Current is carried by electrons at the Fermi surface no contribution from spin down electrons! Current is (in principle) 100% spin polarized Half–Metallic ferromagnets: (e.g. CrO₂ NiMnSb Sr₂FeMoO₂)

R.A. de Groot el al. (1983)

Applications in spin electronics Magnetoresistive devices, Quantum Computer

21 / 33

21 / 33

Correlation effects in half-metallic ferromagnets: formation of states within the gap

"non-quasiparticle states" V. Yu. Irkhin and M. I. Katsnelson (90) D.M. Edwards and J. A. Hertz (73)

22 / 33

22 / 33

Density of states

Correlation effects in half-metallic ferromagnets: formation of states within the gap

> "non-quasiparticle states" V. Yu. Irkhin and M. I. Katsnelson (90) D.M. Edwards and J. A. Hertz (73)

Density of states

Correlation effects in half-metallic ferromagnets: formation of states within the gap

22 / 33

Correlation effects in half-metallic ferromagnets: formation of states within the gap

Correlation effects in half-metallic ferromagnets: formation of states within the gap

Sraz University of Technology

CrO_2

First predicted to be a half-metallic ferromagnet by K.-H. Schwarz, J. Phys. F 19, L211 (1986)

Optics, transport: I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, Phys. Rev. B (1999)

... and many others ...

23 / 33

< E

CrO₂

Building up the model: Relevant orbitals in CrO_2

Cr 3d Orbitals,

24 / 33

CrO₂

Building up the model: Relevant orbitals in CrO_2

downfolding = integrating out high-energy bands

Andersen et al

E. Arrigoni (ITP^{CP} / TU Graz)

Electron Correlations in Solids

Application: Half-Metallic Ferromagnets CrO₂

Building up the model: Relevant orbitals in CrO_2

Interaction Energy $U \approx 3eV$

24 / 33

CrO₂

Building up the model: Relevant orbitals in CrO_2

Interaction Energy U' = U - 2J

24 / 33

CrO₂

Building up the model: Relevant orbitals in CrO₂

Interaction Energy U' - J (Hund's rule $J \approx 0.9 eV$)

24 / 33

CrO₂

Building up the model: Relevant orbitals in CrO_2

Spin-flip J: spin-rotation invariance

24 / 33

CrO₂

Building up the model: Relevant orbitals in CrO_2

Spin-flip J: spin-rotation invariance

Model

Multi-orbital Hubbard model

25 / 33

Model

25 / 33

E. Arrigoni (ITP^{CP} / TU Graz)

-

Model

25 / 33

E. Arrigoni (ITP^{CP} / T<u>U Graz)</u>

-

Results: Spin-resolved density of states for CrO₂:

Spin-resolved LDA

Results: Spin-resolved density of states for CrO₂:

VCA:Our calculation

Energy-Dependent Spin Polarisation

27 / 33

Energy-Dependent Spin Polarisation

Energy-Dependent Spin Polarisation

27 / 33

CrO₂

Energy-Dependent Spin Polarisation

H. Allmaier et al. (Phys. Rev. B 2007)

27 / 33

VCA: Dependence on size of reference system (cluster)

CrO₂

VCA: Dependence on size of reference system (cluster)

CrO₂

VCA: Dependence on size of reference system (cluster)

Electron correlation reduces polarisation

29 / 33

Electron correlation reduces polarisation Electron Correlation is bad for half metallicity?

29 / 33

E. Arrigoni (ITP^{CP} / TU Graz)

Electron Correlations in Solids

RPMBT14, Barcelona 2007

Correlation-induced half-metallicity in VAs?

(Chioncel, Mavropoulos, Lezaic, Blügel, Arrigoni, Katsnelson, Lichtenstein, PRL 2006)

LDA (GGA) calculations predict VAs (Zincblende) to be a ferromagnetic semiconductor However, with a small gap in spin up

Correlation-induced half-metallicity in VAs?

(Chioncel, Mavropoulos, Lezaic, Blügel, Arrigoni, Katsnelson, Lichtenstein, PRL 2006)

LDA (GGA) calculations predict VAs (Zincblende) to be a ferromagnetic semiconductor

Correlation-induced half-metallicity in VAs?

(Chioncel, Mavropoulos, Lezaic, Blügel, Arrigoni, Katsnelson, Lichtenstein, PRL 2006)

LDA (GGA) calculations predict VAs (Zincblende) to be a ferromagnetic semiconductor

Outline

- 2 How do we deal with electron correlation?
 - Variational Cluster Approach (VCA)
 - Combination with realistic ab initio methods

3 Application: High-Temperature Superconductors: phase diagram

- 4 Application: Half-Metallic Ferromagnets
 - Nonquasiparticle states
 - CrO₂
 - VAs: a correlation-induced half-metal ?

5 Summary and Outlook

Thanks to

M. Aichhorn, M. Potthoff, W. Hanke (Würzburg) L. Chioncel, M. Daghofer, H. Allmaier, A.-M. Fulterer (Graz) A. I. Lichtenstein (Hamburg), M. I. Katsnelson (Nijmegen)

Thanks to

M. Aichhorn, M. Potthoff, W. Hanke (Würzburg) L. Chioncel, M. Daghofer, H. Allmaier, A.-M. Fulterer (Graz) A. I. Lichtenstein (Hamburg), M. I. Katsnelson (Nijmegen)

FWF: P18551-N16 "Competing Phases in High-Temperature Superconductors: a theoretical investigation" FWF P18505-N16 "Correlation effects in Half-Metallic ferromagnets"

Thanks to

M. Aichhorn, M. Potthoff, W. Hanke (Würzburg) L. Chioncel, M. Daghofer, H. Allmaier, A.-M. Fulterer (Graz) A. I. Lichtenstein (Hamburg), M. I. Katsnelson (Nijmegen)

FWF: P18551-N16 "Competing Phases in High-Temperature Superconductors: a theoretical investigation"
FWF P18505-N16 "Correlation effects in Half-Metallic ferromagnets"
DFG: FOR 538 "Doping dependence of phase transition and ordering phenomena in copper-oxyde superconductors"

Graz University of Technolog

 Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):

- Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):
- HTSC: inhomogeneous phases: hole- vs. el-doped case.

- Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):
- HTSC: inhomogeneous phases: hole- vs. el-doped case.
- HMF: Nonquasiparticle states and reduction of spin polarisation (CrO₂)

- Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):
- HTSC: inhomogeneous phases: hole- vs. el-doped case.
- HMF: Nonquasiparticle states and reduction of spin polarisation (CrO₂)
- Correlation induced half-metallicity (VAs)

Summary

- Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):
- HTSC: inhomogeneous phases: hole- vs. el-doped case.
- HMF: Nonquasiparticle states and reduction of spin polarisation (CrO₂)
- Correlation induced half-metallicity (VAs)
- Combination of cluster calculations (VCA) with ab initio methods (LDA,GGA)

Summary

- Importance of correlation effects in high-temperature superconductors (HTSC) and in half-metallic ferromagnets (HMF):
- HTSC: inhomogeneous phases: hole- vs. el-doped case.
- HMF: Nonquasiparticle states and reduction of spin polarisation (CrO₂)
- Correlation induced half-metallicity (VAs)
- Combination of cluster calculations (VCA) with ab initio methods (LDA,GGA)
- Outlook:
 - Full charge self consistency (VCA-LDA)
 - Surface effects (HMF)
 - VCA: Susceptibilities, DC conductivity

33 / 33