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TheN -body problem of Chemistry

We are essentially interested in the ground-state and
low-lying excited states properties (T = 0 quantum problem)

Main difficulties :
============
• Coulombic potential (nuclear attractions and electronic
repulsion)

• Fermions (electrons) in 3D ordinary space.

• N large but finite.

• Very high accuracy on eigensolutions is required.

=⇒ a very difficult (the most difficult ?) N -body quantum
problem !
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The “chemical” Hamiltonian

H =
∑

i,σ

〈i|h|j〉a+
iσajσ +

∑

i,j,k,lσσ′

〈ij|1/r12|kl〉a+
iσa

+
jσ′akσ′alσ

where |i〉 denotes a set of N orthonormal i one-particle
basis functions (molecular orbitals)

with N ∼ 10nelectrons ! !
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Chemical accuracy

• Atomization energies : ∆E0/E0 . 10−4

• Energy barriers, electronic affinities, etc. ∆E0/E0 . 10−5

• Weak intermolcular forces (Hydrogen bonds, van der

Waals forces) ∆E0/E0 . 10−6
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Standard approaches

• Density Functional Theories (DFT)

→ good but ill-controlled

• Ab initio wavefunction based approaches (SCF and
post-SCF)

→ good but badly-converged

• quantum Monte Carlo (QMC)

→ ?
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Essential points of QMC I

• Variational Monte Carlo (VMC) = Markov Chain Monte
Carlo with density Π = ψ2

T (standard Metropolis scheme)

ψT = known trial wave function (use of the long-term
experience of ab initio quantum chemistry)

Variational energy : (ΨT , HΨT )/(ΨT ,ΨT ) is computed as a
simple average

EV MC = 〈EL〉Π
where the local energy is defined as

EL = HΨT /ΨT
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Trial wavefunction ψT

ψT (~r1, ..., ~rnelec
) =

Nc
∑

K=1

cK exp [
∑

i,j,α

UK(riα, rjα, rij)]||φ(K)||α ||φ(K)||β

• Spin-free formalism
• Nc= number of determinants
• expUK = Jastrow factors

• φα,β
(K)

(~r) = one-electron spatial orbitals

• Without Jastrow factors : standard forms (SCF, DFT, VB,
MCSCF, CI, ...)

• No particular constraints on the orbitals (gaussians, sla-

ters, splines, ...)
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Jastrow factor

Typical form :

exp
∑

α

∑

<i,j>

U(riα, rjα, rij) (1)

U(riα, rjα, rij) = s(xij)+p
(α)(xiα)+c1x

2
iαx

2
jα+c2(x

2
iα+x2

jα)x2
ij+c3x

2
ij

(2)
with

xij =
rij

1 + bσrij

xiα =
riα

1 + bαriα

s(x) = s1x+ s2x
2 + s3x

3 + s4x
4

p(α)(x) = p
(α)
1 x+ p

(α)
2 x2 + p

(α)
3 x3 + p

(α)
4 x4,
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Essential points of QMC II

• Optimization of the parameters entering ψT by minimizing
energy or variance of energy :

Not so easy but we are able to optimize “relatively well” quite

a large number of parameters (main problem : energy com-

puted stochastically). Note that some interesting progress

has been made very recently (see, Umrigar et al. Phys. Rev.

Lett. 98 110201 (2007))
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Essential points of QMC III

DIFFUSION MONTE CARLO (DMC) :

• Markov Chain Monte Carlo of VMC

• + branching process : the configurations are multiplied or
killed proportionally to w :

w ∼ exp[−τ(EL − ET )]

It can be shown that the probability density is no longer ψ2
T ,

like in VMC, but
ΠDMC ∼ ψTφ0

φ0= unknown ground-state and we have :

E0 = 〈EL〉Π
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Particle Statistics

However, pb. with statistics :

• Bosons : Φ0 has a constant sign → no problem

• Fermions (e.g., chemistry) : Φ0 antisymmetric under the ex-

change of spin-like fermions ⇒ Φ0 has no longer a constant

sign.
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Essential points of QMC III

The positive density generated by the usual Fixed-Node
(FN) DMC for fermions is biased :

ΠDMC = ΨT Φ0,FN

where HΦ0,FN = E0,FNΦ0,FN

with Φ0,FN = 0 whenener ΨT = 0

Nodal hypersurfaces of ΨT = 0 are usually not exact
⇒ fixed-node error

Variational property : E0,FN ≥ E0
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Benchmark Grossman

Réf : J.C. Grossman J.Chem.Phys. 117, 1434 (2002).
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Benchmark Grossman, 2002

G1 set Pople and collab. (1990) = 55 molecules.
Atomisation energies

FN-DMC, pseudo-potential for representing the effect of 1s
electrons, mono-configurational wavefunction

Mean absolute deviation : ǫMAD

• FN-DMC : ǫMAD = 2.9kcal/mol

• LDA : ǫMAD ∼ 40kcal/mol

• GGA : (B3LYP et B3PW91) ǫMAD ∼ 2.5kcal/mol

• CCSD(T)/aug-cc-pVQZ ǫMAD ∼ 2.8kcal/mol
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Reducing errors in FN-DMC for chemistry

Two types of errors :

I. Statistical error like in any Monte Carlo scheme

II.Systematic errors (biases) : mainly the fixed-node error,
the other biases can be controlled.
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Statistical error

• For a stable calculation (bosons or fermions treated with
FN approximation) :

〈F 〉Π + δF

with

δF =
σ(F )

√

N/Nc

where σ(F ) =

√

〈F 2〉 − 〈F 〉2

N = number of Monte Carlo steps

Nc = correlation time in unit of time step
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Sign problem

• For an unstable calculation where fermions are treated
exactly (nodal release-type approaches) :

δE ∼ e(EF−EB)N

√
N

where :

EF = fermion ground-state energy, EF ∼ O(N)

EB = boson ground-state energy, EB ∼ O(Nγ) with γ > 1

→ famous “sign problem”
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Reducing statistical errors

δF =
σ(F )

√

N/Nc

where σ(F ) =

√

〈F 2〉 − 〈F 〉2

An efficient way of decreasing ǫ is to reduce σ :

“Improved” or “renormalized” estimators :

〈F̃ 〉Π = 〈F 〉Π and σ2(F̃ ) << σ2(F ). (3)

Strategy developed during these last years [R.Assaraf and

MC, PRL 83 (1999), , JCP 113 (2000) and JCP 119 (2003)]
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Reducing statistical errors

Here, recent application to one-body densities and
properties (R.Assaraf et al. Phys.Rev.E 75 035701 (2007))

ρ(r) = 〈
N

∑

i=1

δ(ri − r)〉Π (4)

Improved estimator :

ρ(r) = − 1

4π

N
∑

i=1

〈[ 1

|ri − r| − g]
∇2

i (fΠ)

Π
〉Π, (5)

where f, g two arbit. funct. adjusted to lower statistical errors
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Reducing statistical errors
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Reducing statistical errors
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Reducing statistical errors

Advantages :

• Errors can be greatly reduced (orders of magnitude)

• Can be used for any type of Monte Carlo simulation

• Compute density everywhere in space

• The density is much smoother over a larget set of grid
points (132651 for the water dimer, below)
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Fixed-Node Error and Chemistry

Correlation energy : CE ≡ E0(exact) - E0[mean-field(SCF)]

CE/E0(exact) ∼ 1/1000

The fixed-node is “small” ∼ a few percent of the correlation
energy (relative error on E0 of about a few 1/100000 ! !) ....

However :
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Dissociation barrier of O4

[Collaboration with A. Ramírez-Solís, R.
Hernández-Lamoneda (Cuernavaca, Mexique) and A.
Scemama (Paris, LCT)].

O4 (metastable) → O4 (transition state, TS) → 2 O2 (triplet)

Expt : some indications that the barrier between O4 → and
O4(TS) is greater than 10 kcal.

FN-DMC calculations : O4 → O4 (TS) = 26.2 +/- 2.9 kcal
with SCF nodes

O4 → O4 (TS) = 12. +/- 1.6 kcal with MCSCF nodes

Most sophisticated ab initio calculations (CCSD(T),ACPF) : 8-

9 kcal
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Fixed-Node DMC for Cr2

Experimental binding energy ∼ -0.056 a.u.

SCF Binding energy (basis set= [20s12p9d5f] )

E(Cr2)-2 E(Cr) = + 0.795 a.u. unbound (by far !) molecule

Fixed-node DMC calculation :

SCF nodes : E(Cr2)-2 E(Cr) = + 0.01(3)

Cr2 is not bound (or slightly bound) at the Fixed-SCF Node

DMC level ! !
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Fixed-Node DMC for Cr2

Very interesting comparison with Scuseria’s calculation
(1991) :

Scuseria : (10s8p3d2f1g) ESCF (Ropt = 2.76)=-2085.952 a.u.

Here : (20s12p9d5f ) ESCF (R = 3.2)=-2085.917 a.u.

Correlated calculations for E0 :

E0[CCSD(T) ;Ropt = 3.03]= -2087.516 a.u.

E0[FN-DMC ;R = 3.2 ]= -2088.612(24) a.u. (about 1.1
a.u. lower ! !)

Binding energies :

Scuseria : -0.018

Here : +0.01(3)

⇒ “monoconfigurational nodes” is the problem...
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Some conclusions

We need either :

to improve the trial wave functions with the hope that nodal
hypersurfaces are improved (e.g., Umrigar and coll.)

or :

to get some physical insight into fermionic nodes for
coulombic systems (e.g., Bressanini et coll., Mitas et coll.)

or :

to solve the sign problem (e.g., almost everyone in QMC..)
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