Quantum Monte Carlo for the electronic structure of atomic systems

A. Sarsa, E. Buendía, F. J. Gálvez and P. Maldonado

Spain

Departamento de Física At., Mol. y Nucl. Universidad de Granada

Spain

- Introduction
- Correlations with Monte Carlo
- Relativistic Corrections
- Results
- Conclusions and perspectives

- Introduction
- Correlations with Monte Carlo
- Relativistic Corrections
- Results
- Conclusions and perspectives

- Introduction
- Correlations with Monte Carlo
- Relativistic Corrections
- Results
- Conclusions and perspectives

- Introduction
- Correlations with Monte Carlo
- Relativistic Corrections
- Results
- Conclusions and perspectives

- Introduction
- Correlations with Monte Carlo
- Relativistic Corrections
- Results
- Conclusions and perspectives

INTRODUCTION

- Quantum Monte Carlo methods
- Electronic structure of atoms
- Importance of relativity and correlations

INTRODUCTION

- Quantum Monte Carlo methods
- Electronic structure of atoms
- Importance of relativity and correlations

INTRODUCTION

- Quantum Monte Carlo methods
- Electronic structure of atoms
- Importance of relativity and correlations

• Provide the exact ground state energy of many boson

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space
- Developed about 40 ago for nuclear problems

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space
- Developed about 40 ago for nuclear problems
- First seventies applications to liquid helium at zero temperature

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space
- Developed about 40 ago for nuclear problems
- First seventies applications to liquid helium at zero temperature
- First eighties applications to electronic structure of atoms

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space
- Developed about 40 ago for nuclear problems
- First seventies applications to liquid helium at zero temperature
- First eighties applications to electronic structure of atoms
- A simplification of the method was developed in that period

- Provide the exact ground state energy of many boson
- Provide a very accurate ground state energy of many fermion
- Based on random walks on the configuration space
- Developed about 40 ago for nuclear problems
- First seventies applications to liquid helium at zero temperature
- First eighties applications to electronic structure of atoms
- A simplification of the method was developed in that period
- Nowadays used for homogeneous and non homogeneous systems

• Experimental ionization potentials, electron affinities and excitation energies are known very accurately

- Experimental ionization potentials, electron affinities and excitation energies are known very accurately
- Hartree-Fock is the starting point theoretically. Not very reliable

- Experimental ionization potentials, electron affinities and excitation energies are known very accurately
- Hartree-Fock is the starting point theoretically. Not very reliable
- Importance of correlations and relativistic effects

- Experimental ionization potentials, electron affinities and excitation energies are known very accurately
- Hartree-Fock is the starting point theoretically. Not very reliable
- Importance of correlations and relativistic effects
- The ions are hard to describe

- Experimental ionization potentials, electron affinities and excitation energies are known very accurately
- Hartree-Fock is the starting point theoretically. Not very reliable
- Importance of correlations and relativistic effects
- The ions are hard to describe
- Quantum Chemistry methods (CI and CC) have been applied for some cases

• Quantum Monte Carlo have been mostly used for the ground state of light $Z \le 10$ atoms

- Quantum Monte Carlo have been mostly used for the ground state of light $Z \le 10$ atoms
- Quantum Monte Carlo can be applied to some excited states.
 Wave functions with the proper values of the angular momentum and parity are needed

- Quantum Monte Carlo have been mostly used for the ground state of light $Z \le 10$ atoms
- Quantum Monte Carlo can be applied to some excited states.
 Wave functions with the proper values of the angular momentum and parity are needed
- For heavier systems no extra technical difficulties arise.

- Quantum Monte Carlo have been mostly used for the ground state of light $Z \le 10$ atoms
- Quantum Monte Carlo can be applied to some excited states.
 Wave functions with the proper values of the angular momentum and parity are needed
- For heavier systems no extra technical difficulties arise.
 - The computational time grows

- Quantum Monte Carlo have been mostly used for the ground state of light $Z \le 10$ atoms
- Quantum Monte Carlo can be applied to some excited states.
 Wave functions with the proper values of the angular momentum and parity are needed
- For heavier systems no extra technical difficulties arise.
 - The computational time grows
 - $^{\circ}$ Electron density becomes more inhomogeneous (shell structure, the size of the atoms hardly grows with N)

• The convergence of the Monte Carlo is reduced

- The convergence of the Monte Carlo is reduced
- For heavier systems the importance of relativistic effects increases

• For the ground state energy relativistic effects are MORE important than correlations for $Z \ge 12$.

 $E_{\text{Rel}} - E_{\text{HF}}$: Relativistic correction, $E_{\text{DMC}} - E_{\text{HF}}$: Correlation energy, $E_{\text{VMC}} - E_{\text{HF}}$: Correlation Energy $\Delta E \leq 2$ h Atomic units

• For the ground state energy relativistic effects are MORE important than correlations for $Z \ge 12$.

 $E_{\text{Rel}} - E_{\text{HF}}$: Relativistic correction, $E_{\text{DMC}} - E_{\text{HF}}$: Correlation energy, $E_{\text{VMC}} - E_{\text{HF}}$: Correlation Energy $\Delta E \leq 2$ h Atomic units

• For the ground state energy relativistic effects are MORE important than correlations for $Z \ge 12$.

Left $19 \le Z \le 36$, $0 \le \Delta E \le 60$ Right $37 \le Z \le 54$, $0 \le \Delta E \le 250$ Relativistic correction, VMC Correlation energy Atomic units

• For the ground state energy relativistic effects are MORE important than correlations for $Z \ge 12$.

Left $19 \le Z \le 36$, $0 \le \Delta E \le 60$ Right $37 \le Z \le 54$, $0 \le \Delta E \le 250$ Relativistic correction, VMC Correlation energy Atomic units

• Relativistic effects many take place mainly in the inner core
- Relativistic effects many take place mainly in the inner core
- Less importance is expected for differences of energies of configurations differing in the outermost shells.
 Correction to the lonization potential in atomic units

Left $2 \le Z \le 18$, $-0.03 \le \Delta E \le 0.07$ Right $19 \le Z \le 36$, $-0.12 \le \Delta E \le 0.06$ Relativistic correction, Correlation energy

- Relativistic effects many take place mainly in the inner core
- Less importance is expected for differences of energies of configurations differing in the outermost shells.

Correction to the Ionization potential in atomic units

Left $2 \le Z \le 18$, $-0.03 \le \Delta E \le 0.07$ Right $19 \le Z \le 36$, $-0.12 \le \Delta E \le 0.06$ Relativistic correction, Correlation energy

Ionization Potential

Ionization potential Left $2 \le Z \le 10$ (Ne) Right $11 \le Z \le 18$ (Ar) Points: experimental, HF, Relativity, Correlations, Relativity+Correlations

Ionization potential Left $2 \le Z \le 10$ (Ne) Right $11 \le Z \le 18$ (Ar) Points: experimental, HF, Relativity, Correlations, Relativity+Correlations

Ionization Potential

Ionization potential Left $19 \le Z \le 36$ (Kr) Right $36 \le Z \le 54$ (Xe) Points: experimental, HF, Relativity, Correlations, Relativity+Correlations

Ionization Potential

Ionization potential Left $19 \le Z \le 36$ (Kr) Right $36 \le Z \le 54$ (Xe) Points: experimental, HF, Relativity, Correlations, Relativity+Correlations

Electron Affinity

Relativistic correction, Correlation energy, Non relativistic non correlated

Electron Affinity

Atomic electron afinity

Relativistic correction, Correlation energy, Non relativistic non correlated

 \leftarrow

Low lying spectrum of the Fe atom

POEP no relativity no correlations, JPOEP correlations without relativity, RPOEP relativity without correlations,

Quantum Monte Carlo for the electronic structure of atomic systems – p.14/52

• Low lying spectrum of the Fe atom

POEP no relativity no correlations, JPOEP correlations without relativity, RPOEP relativity without correlations,

\

CORRELATIONS WITH MONTE CARLO

- Variational Monte Carlo
- Quantum Monte Carlo

CORRELATIONS WITH MONTE CARLO

- Variational Monte Carlo
- Quantum Monte Carlo

• In order to get accurate results from Quantum Monte Carlo is convenient to have an accurate wave function for the system

- In order to get accurate results from Quantum Monte Carlo is convenient to have an accurate wave function for the system
- Having an approximate wave function containing the most relevant dynamical elements of the system is important by itself

- In order to get accurate results from Quantum Monte Carlo is convenient to have an accurate wave function for the system
- Having an approximate wave function containing the most relevant dynamical elements of the system is important by itself
- A functional form is chosen with some free parameters fixed variationally

- In order to get accurate results from Quantum Monte Carlo is convenient to have an accurate wave function for the system
- Having an approximate wave function containing the most relevant dynamical elements of the system is important by itself
- A functional form is chosen with some free parameters fixed variationally
- Approximate description of other properties than the energy such as electron densities

• Non-relativistic calculation

- Non-relativistic calculation
- Monte Carlo quadrature is used for calculating the expectation values of the energy

- Non-relativistic calculation
- Monte Carlo quadrature is used for calculating the expectation values of the energy
- This allows for any form of the trial wave function (no analytic integral is needed)

- Non-relativistic calculation
- Monte Carlo quadrature is used for calculating the expectation values of the energy
- This allows for any form of the trial wave function (no analytic integral is needed)
- Compact form of the wave functions with a small number of free parameters are used typically

- Non-relativistic calculation
- Monte Carlo quadrature is used for calculating the expectation values of the energy
- This allows for any form of the trial wave function (no analytic integral is needed)
- Compact form of the wave functions with a small number of free parameters are used typically
- Energy minimization or variance minimization or a mixture of both is employed to fix the free parameters

• In the problem of the electronic structure of atoms the following ansatz is widely used

$$\Psi_t(R) = F(r_i, r_{ij})\Phi \tag{1}$$

• In the problem of the electronic structure of atoms the following ansatz is widely used

$$\Psi_t(R) = F(r_i, r_{ij})\Phi \tag{2}$$

• Φ , the model function, is a Slater determinant of a linear combination of them, usually with the proper *L* and *S* values of the state

 In the problem of the electronic structure of atoms the following ansatz is widely used

$$\Psi_t(R) = F(r_i, r_{ij})\Phi \tag{3}$$

- Φ , the model function, is a Slater determinant of a linear combination of them, usually with the proper *L* and *S* values of the state
- \circ F is a generalized Jastrow factor

• In the problem of the electronic structure of atoms the following ansatz is widely used

$$\Psi_t(R) = F(r_i, r_{ij})\Phi \tag{4}$$

- $\circ \Phi$, the model function, is a Slater determinant of a linear combination of them, usually with the proper *L* and *S* values of the state
- \circ F is a generalized Jastrow factor
- In Φ the inter-electronic distance, r_{ij} is not included explicitly

• In the problem of the electronic structure of atoms the following ansatz is widely used

$$\Psi_t(R) = F(r_i, r_{ij})\Phi \tag{5}$$

- Φ , the model function, is a Slater determinant of a linear combination of them, usually with the proper *L* and *S* values of the state
- \circ F is a generalized Jastrow factor
- In Φ the inter-electronic distance, r_{ij} is not included explicitly
- fixed by using Hartree-Fock, Optimized Effective Potential or Multi-Configuration Hartree-Fock methods.

• The linear coefficients of the Multi-Configuration expansion can be optimized along with the Jastrow factor

- The linear coefficients of the Multi-Configuration expansion can be optimized along with the Jastrow factor
- This ansatz provides accurate results for atoms and cations up to 36 electrons *Buendía et al.* CPL **436** 352 (2007)

- The linear coefficients of the Multi-Configuration expansion can be optimized along with the Jastrow factor
- This ansatz provides accurate results for atoms and cations up to 36 electrons *Buendía et al.* CPL **436** 352 (2007)
- Modifying the orbitals in the Monte Carlo optimization is harder.

- The linear coefficients of the Multi-Configuration expansion can be optimized along with the Jastrow factor
- This ansatz provides accurate results for atoms and cations up to 36 electrons *Buendía et al.* CPL **436** 352 (2007)
- Modifying the orbitals in the Monte Carlo optimization is harder.
- Very accurate VMC and DMC have been very recently obtained using back-flow and hundreds of determinants for $3 \le Z \le 10$ atoms, *Brown et al.* JCP **126** 224110 (2007)

• It is important for F to include dependence on r_i , the distance of the electron i to the nucleus.

• It is important for F to include dependence on r_i , the distance of the electron i to the nucleus.

VMC Ground state energy of some atoms in hartree. Second rows percentage of correlation energy. F_{ee} only e-e correlations and F_{ee-en} e-e and e-n correlations.

Atom	HF	$F_{ m ee}$	$F_{\rm ee-en}$	Exact
Be	-14.57302313	-14.6073(2)	-14.64672(2)	-14.66736
		36	78	
Ν	-54.40093415	-54.447(1)	-54.5526(2)	-54.5892
		25	80	
Ne	-128.5470980	-128.621(1)	-128.8930(7)	-128.9376
		19	89	

• A parameterization of the correlation factor leading to accurate results is

$$F = e^{\sum_{i < j} U_{ij}} \tag{6}$$

and

$$U_{ij} = \sum_{k=1}^{N_c} c_k (\bar{r}_i^{\boldsymbol{m_k}} \bar{r}_j^{\boldsymbol{n_k}} + \bar{r}_i^{\boldsymbol{n_k}} \bar{r}_j^{\boldsymbol{m_k}}) \bar{r}_{ij}^{\boldsymbol{o_k}}$$
(7)

where

$$\bar{r}_i = \frac{b r_i}{1 + b r_i}, \quad \bar{r}_{ij} = \frac{d r_{ij}}{1 + d r_{ij}}$$

• A parameterization of the correlation factor leading to accurate results is

$$F = e^{\sum_{i < j} U_{ij}} \tag{8}$$

and

$$U_{ij} = \sum_{k=1}^{N_c} c_k (\bar{r}_i^{m_k} \bar{r}_j^{n_k} + \bar{r}_i^{n_k} \bar{r}_j^{m_k}) \bar{r}_{ij}^{o_k}$$
(9)

where

$$\bar{r}_i = \frac{b r_i}{1 + b r_i}, \quad \bar{r}_{ij} = \frac{d r_{ij}}{1 + d r_{ij}}$$

• m_k , n_k and o_k are given, b and d are usually fixed to one and c_k are the free parameters

• The functional form is based on a averaged back-flow type correlation

- The functional form is based on a averaged back-flow type correlation
- Presents the correct long and short range behaviors expected for this correlation
Variational Monte Carlo

- The functional form is based on a averaged back-flow type correlation
- Presents the correct long and short range behaviors expected for this correlation
- The total energy, and the variance present a simple dependence on the free parameters.

Variational Monte Carlo

- The functional form is based on a averaged back-flow type correlation
- Presents the correct long and short range behaviors expected for this correlation
- The total energy, and the variance present a simple dependence on the free parameters.
- The electron-electron cusp condition is imposed exactly.

Variational Monte Carlo

- The functional form is based on a averaged back-flow type correlation
- Presents the correct long and short range behaviors expected for this correlation
- The total energy, and the variance present a simple dependence on the free parameters.
- The electron-electron cusp condition is imposed exactly.
- This is an analytic property of the exact wave function that leads to a faster convergence of approximate wave functions and condition and reduces the statistical error of Monte Carlo simulations (removes some divergences of the local energy)

• Calculates numerically the Green's function of a quantum system

- Calculates numerically the Green's function of a quantum system
- The Green's function is built as a large set of random walks

- Calculates numerically the Green's function of a quantum system
- The Green's function is built as a large set of random walks
- The dynamics of the random walks is given by a probability distribution function and a transition probability

- Calculates numerically the Green's function of a quantum system
- The Green's function is built as a large set of random walks
- The dynamics of the random walks is given by a probability distribution function and a transition probability
- The probability distribution must be non-negative. This leads to the sign problem

- Calculates numerically the Green's function of a quantum system
- The Green's function is built as a large set of random walks
- The dynamics of the random walks is given by a probability distribution function and a transition probability
- The probability distribution must be non-negative. This leads to the sign problem
- If the nodes are known approximately, an upper bound to the exact energy is obtained

Several algorithms have been proposed to produce the random walks

- Several algorithms have been proposed to produce the random walks
- Here we shall focus on two of them that provide the same results

- Several algorithms have been proposed to produce the random walks
- Here we shall focus on two of them that provide the same results
 - Diffusion Monte Carlo

- Several algorithms have been proposed to produce the random walks
- Here we shall focus on two of them that provide the same results
 - Diffusion Monte Carlo
 - Green's function Monte Carlo

- Several algorithms have been proposed to produce the random walks
- Here we shall focus on two of them that provide the same results
 - Diffusion Monte Carlo
 - Green's function Monte Carlo
- In order to apply Quantum Monte Carlo is very convenient to have an approximate wave function of the system Nodal surface and Importance Sampling

- Several algorithms have been proposed to produce the random walks
- Here we shall focus on two of them that provide the same results
 - Diffusion Monte Carlo
 - Green's function Monte Carlo
- In order to apply Quantum Monte Carlo is very convenient to have an approximate wave function of the system Nodal surface and Importance Sampling
- If no importance sampling is used, the statistical error would be unacceptable

• The random walks are done by proposing moves in the configuration space

- The random walks are done by proposing moves in the configuration space
- The moves are accepted or refused according to a given transition probability and the probability distribution function

- The random walks are done by proposing moves in the configuration space
- The moves are accepted or refused according to a given transition probability and the probability distribution function
- If too many moves are refused the algorithm is inefficient and the statistical error is big

- The random walks are done by proposing moves in the configuration space
- The moves are accepted or refused according to a given transition probability and the probability distribution function
- If too many moves are refused the algorithm is inefficient and the statistical error is big
- Importance sampling is a technique that favors moves that are likely to be accepted. Efficiency is greatly improved

- The random walks are done by proposing moves in the configuration space
- The moves are accepted or refused according to a given transition probability and the probability distribution function
- If too many moves are refused the algorithm is inefficient and the statistical error is big
- Importance sampling is a technique that favors moves that are likely to be accepted. Efficiency is greatly improved
- Importance sampling needs an approximate wave function. Ideal importance sampling is done with the exact wave function.

- The random walks are done by proposing moves in the configuration space
- The moves are accepted or refused according to a given transition probability and the probability distribution function
- If too many moves are refused the algorithm is inefficient and the statistical error is big
- Importance sampling is a technique that favors moves that are likely to be accepted. Efficiency is greatly improved
- Importance sampling needs an approximate wave function. Ideal importance sampling is done with the exact wave function.
- Wave function and its derivatives must be computed to propose the move

 In the Diffusion Monte Carlo, an approximate Green's function is sampled

- In the Diffusion Monte Carlo, an approximate Green's function is sampled
- A parameter, called time step, controls the approximation. In the limit of zero time step the exact energy is obtained

- In the Diffusion Monte Carlo, an approximate Green's function is sampled
- A parameter, called time step, controls the approximation. In the limit of zero time step the exact energy is obtained
- Finite time step is needed for carrying out the simulation

- In the Diffusion Monte Carlo, an approximate Green's function is sampled
- A parameter, called time step, controls the approximation. In the limit of zero time step the exact energy is obtained
- Finite time step is needed for carrying out the simulation
- Simulations at different time steps. The energy is obtained by extrapolation

- In the Diffusion Monte Carlo, an approximate Green's function is sampled
- A parameter, called time step, controls the approximation. In the limit of zero time step the exact energy is obtained
- Finite time step is needed for carrying out the simulation
- Simulations at different time steps. The energy is obtained by extrapolation
- For atoms, the larger *Z* the smaller the time steps

• The value of the extrapolated energy has a systematic error due to the approximate nodal surface

- The value of the extrapolated energy has a systematic error due to the approximate nodal surface

- The value of the extrapolated energy has a systematic error due to the approximate nodal surface
 - Carbon -37.826 HF F*HF -37.828 2 confs 8 configs -37.8450 -37.83 -37.832 -37.834 E (h) -37.836 -37.838 -37.84 -37.842 -37.844 Exact -37.846 0.001 0.002 0.003 0.004 0.005 0.006 0 dt

• The exact Green's function (with the nodal error) is sampled

- The exact Green's function (with the nodal error) is sampled
- The Green's function is expanded in a Born series.

- The exact Green's function (with the nodal error) is sampled
- The Green's function is expanded in a Born series.
- To build the series an approximate Green's function is used

- The exact Green's function (with the nodal error) is sampled
- The Green's function is expanded in a Born series.
- To build the series an approximate Green's function is used
- The series is summed exactly by using Monte Carlo.

- The exact Green's function (with the nodal error) is sampled
- The Green's function is expanded in a Born series.
- To build the series an approximate Green's function is used
- The series is summed exactly by using Monte Carlo.
- The results coincide with the extrapolated Diffusion Monte Carlo

- The exact Green's function (with the nodal error) is sampled
- The Green's function is expanded in a Born series.
- To build the series an approximate Green's function is used
- The series is summed exactly by using Monte Carlo.
- The results coincide with the extrapolated Diffusion Monte Carlo

Ground state energy of the Beryllium atom in hartree

Method	Single Configuration	Two Configurations
VMC	-14.64625(4)	-14.66282(3)
DMC	-14.65740(8)	-14.66710(4)
GFMC	-14.65747(8)	-14.66717(5)
HF	-14.57302313	
Exact	-14.66736	

Monte Carlo Methods: Performance

Monte Carlo Methods: Performance

Monte Carlo Methods: Performance

• The correlation energy is the difference between the energy obtained in a given approximation and the Hartree-Fock energy

Monte Carlo Methods: Performance

 \leftarrow

- The correlation energy is the difference between the energy obtained in a given approximation and the Hartree-Fock energy
- For atoms and cations with less than 18 electrons the non relativistic energy has been estimated. Is taken as exact here.

RELATIVISTIC CORRECTIONS

- Optimized Effective Potential Method
- Hamiltonian

RELATIVISTIC CORRECTIONS

- Optimized Effective Potential Method
- Hamiltonian

• Solution of the *N* electron problem not including correlations

- Solution of the *N* electron problem not including correlations
- Approximation to the Hartree-Fock method (relative differences below 0.01%)

- Solution of the *N* electron problem not including correlations
- Approximation to the Hartree-Fock method (relative differences below 0.01%)
- Variational approach based on trial wave functions written as linear combination of Slater determinants

- Solution of the *N* electron problem not including correlations
- Approximation to the Hartree-Fock method (relative differences below 0.01%)
- Variational approach based on trial wave functions written as linear combination of Slater determinants
- The trial function is taken to have the angular momentum of the state under study

- Solution of the *N* electron problem not including correlations
- Approximation to the Hartree-Fock method (relative differences below 0.01%)
- Variational approach based on trial wave functions written as linear combination of Slater determinants
- The trial function is taken to have the angular momentum of the state under study
- Can be single or multi configuration anstatz

• The occupied orbitals are eigenfunctions of a single particle hamiltonian

- The occupied orbitals are eigenfunctions of a single particle hamiltonian
- The potential in the single particle hamiltonian is taken to be central

- The occupied orbitals are eigenfunctions of a single particle hamiltonian
- The potential in the single particle hamiltonian is taken to be central
- With these orbitals the Slater determinants are build

- The occupied orbitals are eigenfunctions of a single particle hamiltonian
- The potential in the single particle hamiltonian is taken to be central
- With these orbitals the Slater determinants are build
- Then the expectation value of the *N*-electron hamiltonian is evaluated

- The occupied orbitals are eigenfunctions of a single particle hamiltonian
- The potential in the single particle hamiltonian is taken to be central
- With these orbitals the Slater determinants are build
- Then the expectation value of the *N*-electron hamiltonian is evaluated
- The total energy is a functional of the effective potential. Optimized potential fixed variationally.

• The method can be straightforwardly extended to multi-configurations. All of the orbitals are eigenfunctions of the same single particle hamiltonian

- The method can be straightforwardly extended to multi-configurations. All of the orbitals are eigenfunctions of the same single particle hamiltonian
- The method can be straightforwardly extended to relativistic hamiltonian. No perturbative treatment of relativistic effects (at this non correlated level)

- The method can be straightforwardly extended to multi-configurations. All of the orbitals are eigenfunctions of the same single particle hamiltonian
- The method can be straightforwardly extended to relativistic hamiltonian. No perturbative treatment of relativistic effects (at this non correlated level)
- The method can be used for excited states. No problems with orthogonality appear.

- The method can be straightforwardly extended to multi-configurations. All of the orbitals are eigenfunctions of the same single particle hamiltonian
- The method can be straightforwardly extended to relativistic hamiltonian. No perturbative treatment of relativistic effects (at this non correlated level)
- The method can be used for excited states. No problems with orthogonality appear.
- The equations can be solved very accurately.

- The method can be straightforwardly extended to multi-configurations. All of the orbitals are eigenfunctions of the same single particle hamiltonian
- The method can be straightforwardly extended to relativistic hamiltonian. No perturbative treatment of relativistic effects (at this non correlated level)
- The method can be used for excited states. No problems with orthogonality appear.
- The equations can be solved very accurately.
- Numerical solution of the single-particle Schrödinger or Dirac equation; Parameterization of the effective potential

• The terms are built in terms of the configuration, either single configuration or multi-configuration. The occupied orbitals are selected and the coupling coefficients are calculated

- The terms are built in terms of the configuration, either single configuration or multi-configuration. The occupied orbitals are selected and the coupling coefficients are calculated
- Starting values for the parameters of the effective potential are proposed. Potential is taken to be central.

- The terms are built in terms of the configuration, either single configuration or multi-configuration. The occupied orbitals are selected and the coupling coefficients are calculated
- Starting values for the parameters of the effective potential are proposed. Potential is taken to be central.
- The occupied orbitals are calculated as the single particle eigenfunctions of the Schrödinger or Dirac equation with the potential

- The terms are built in terms of the configuration, either single configuration or multi-configuration. The occupied orbitals are selected and the coupling coefficients are calculated
- Starting values for the parameters of the effective potential are proposed. Potential is taken to be central.
- The occupied orbitals are calculated as the single particle eigenfunctions of the Schrödinger or Dirac equation with the potential
- The trial wave function is built and the expectation value of the *N*-electron relativistic hamiltonian is computed

- The terms are built in terms of the configuration, either single configuration or multi-configuration. The occupied orbitals are selected and the coupling coefficients are calculated
- Starting values for the parameters of the effective potential are proposed. Potential is taken to be central.
- The occupied orbitals are calculated as the single particle eigenfunctions of the Schrödinger or Dirac equation with the potential
- The trial wave function is built and the expectation value of the *N*-electron relativistic hamiltonian is computed
- The energy is minimized with respect to the parameters of the effective potential

• The relativistic hamiltonian used here is

$$H = \sum_{i=1}^{N} h_D(i) + \sum_{i < j} V_{ij}$$
(10)

The relativistic hamiltonian used here is

$$H = \sum_{i=1}^{N} h_D(i) + \sum_{i < j} V_{ij}$$
(11)

• $h_D(i)$ is the Dirac hamiltonian with a central potential $V_n(r)$

$$h_D(i) = c\vec{\alpha}_i \cdot \vec{p}_i + c^2\beta_i + V_n(r)$$

 $V_n(r)$ is the electrostatic potential of a sphere with uniform charge distribution

• The two body potential V_{ij} in

- The two body potential V_{ij} in
 - Coulomb gauge

- The two body potential V_{ij} in
 - Coulomb gauge
 - Only two-body interactions

- The two body potential V_{ij} in
 - Coulomb gauge
 - Only two-body interactions
 - Only one photon-exchange (lowest order)

- The two body potential V_{ij} in
 - Coulomb gauge
 - Only two-body interactions
 - Only one photon-exchange (lowest order)
 - $^{\circ}$ Keeping to order $1/c^2$ inclusive (Breit)

- The two body potential V_{ij} in
 - Coulomb gauge
 - Only two-body interactions
 - Only one photon-exchange (lowest order)
 - $^{\circ}$ Keeping to order $1/c^2$ inclusive (Breit)

$$V_{ij} = \frac{1}{r_{ij}} - B(i,j)$$
$$B(i,j) = \frac{\vec{\alpha}_i \cdot \vec{\alpha}_j}{2r_{ij}} - \frac{(\vec{\alpha}_i \cdot \vec{r}_{ij})(\vec{\alpha}_j \cdot \vec{r}_{ij})}{2r_{ij}^3}$$

• The spinors in the Slater determinant are taken to be the eigen-functions of the following Dirac hamiltonian

$$h_D[V] = c\vec{\alpha} \cdot \vec{p} + c^2\beta + V(r)$$

• The spinors in the Slater determinant are taken to be the eigen-functions of the following Dirac hamiltonian

$$h_D[V] = c\vec{\alpha} \cdot \vec{p} + c^2\beta + V(r)$$

• V(r) is the parameterized effective potential

• The spinors in the Slater determinant are taken to be the eigen-functions of the following Dirac hamiltonian

$$h_D[V] = c\vec{\alpha} \cdot \vec{p} + c^2\beta + V(r)$$

- V(r) is the parameterized effective potential
- All of the occupied orbitals are obtained by solving the equation

$$h_D[V]\phi_{nljm}(q) = \epsilon_{njl}\phi_{nljm}(q)$$

• The spinors in the Slater determinant are taken to be the eigen-functions of the following Dirac hamiltonian

$$h_D[V] = c\vec{\alpha} \cdot \vec{p} + c^2\beta + V(r)$$

- V(r) is the parameterized effective potential
- All of the occupied orbitals are obtained by solving the equation

$$h_D[V]\phi_{nljm}(q) = \epsilon_{njl}\phi_{nljm}(q)$$

• With the spinors the expectation value of the relativistic hamiltonian is evaluated
Relativistic Optimized Effective Potential solution

• The spinors in the Slater determinant are taken to be the eigen-functions of the following Dirac hamiltonian

$$h_D[V] = c\vec{\alpha} \cdot \vec{p} + c^2\beta + V(r)$$

- V(r) is the parameterized effective potential
- All of the occupied orbitals are obtained by solving the equation

$$h_D[V]\phi_{nljm}(q) = \epsilon_{njl}\phi_{nljm}(q)$$

- With the spinors the expectation value of the relativistic hamiltonian is evaluated
- The total energy is minimized with respect to the parameters of the effective potential

• We study here the ³P, ¹D and ¹S, terms of the configuration

 $1s^2 2s^2 2p^2$

• We study here the ³P, ¹D and ¹S, terms of the configuration

 $1s^2 2s^2 2p^2$

• Effects of electronic correlations with Z

• We study here the ³P, ¹D and ¹S, terms of the configuration

 $1s^2 2s^2 2p^2$

- Effects of electronic correlations with Z
- Order of the states. Interpretation of Hund rules

• We study here the ³P, ¹D and ¹S, terms of the configuration

 $1s^2 2s^2 2p^2$

- Effects of electronic correlations with Z
- Order of the states. Interpretation of Hund rules
- Variational Monte Carlo

• We study here the ³P, ¹D and ¹S, terms of the configuration

 $1s^2 2s^2 2p^2$

- Effects of electronic correlations with Z
- Order of the states. Interpretation of Hund rules
- Variational Monte Carlo
- Multi-Configuration model function

 $\Psi_t = F\Phi, \quad [2s^22p^2, \ 2p^4, 2s2p^23s, 2s2p^23p, 2p2p^23d]$

lon	Term	E_{POEP}	E_{MCOEP}	E	E_{exact}^1
С	^{3}P	-37.68862	-37.75273[40.1]	-37.8295(1)[90.1]	-37.8450
	^{1}D	-37.63132	-37.69311[36.9]	-37.7829(1)[90.6]	-37.7986
	^{1}S	-37.54982	-37.62339[37.4]	-37.7287(1)[91.0]	-37.7464
N^+	^{3}P	-53.88801	-53.95734[41.6]	-54.0398(1)[91.2]	-54.0545
	^{1}D	-53.80713	-53.87305[37.1]	-53.9697(3)[91.6]	-53.9847
	^{1}S	-53.68973	-53.77473[39.4]	-53.8882(1)[91.9]	-53.9056
Ne ⁴	+ ³ P	-120.54357	-120.62591[43.9]	-120.7149(2)[91.4]	-120.7310
	^{1}D	-120.39679	-120.47959[42.2]	-120.5794(1)[93.1]	-120.5930
	^{1}S	-120.18032	-120.30168[46.8]	-120.4247(1)[94.2]	-120.4398

¹ Davidson et al. Phys. Rev. A **44**, 7071 (1991) and http://physics.nist.gov/PhysRefData/ASD/index.html

• Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by

 \circ $V_{en} = Z \langle r^{-1} \rangle$ electron-nucleus potential energy

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by
 - \circ $V_{en} = Z \langle r^{-1} \rangle$ electron-nucleus potential energy
 - \circ $V_{ee} = \langle r_{12}^{-1} \rangle$ electron-energy potential energy

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by
 - \circ $V_{en} = Z \langle r^{-1} \rangle$ electron-nucleus potential energy
 - $^{\circ}$ $V_{ee} = \langle r_{12}^{-1} \rangle$ electron-energy potential energy
- The lower E the higher $|V_{en}|$

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by

•
$$V_{en} = Z \langle r^{-1} \rangle$$
 electron-nucleus potential energy

 \circ $V_{ee} = \langle r_{12}^{-1} \rangle$ electron-energy potential energy

- The lower E the higher $|V_{en}|$
- For C and N⁺ the lower E the greater V_{ee}

- Correlation energy around 40% with F = 1 and higher than 90% with the correlation factor
- The virial theorem is fulfilled with accuracy higher than 99.9%. The energetic ordering of the states is governed by

•
$$V_{en} = Z \langle r^{-1} \rangle$$
 electron-nucleus potential energy

 \circ $V_{ee} = \langle r_{12}^{-1} \rangle$ electron-energy potential energy

- The lower E the higher $|V_{en}|$
- For C and N⁺ the lower E the greater V_{ee}
- For the other cations the lower E the greater V_{ee}

• The lower *E* the lower the probability of finding two electrons at the same position

- The lower *E* the lower the probability of finding two electrons at the same position
- The average size of the atom $\langle r \rangle$ grows with the energy

- The lower *E* the lower the probability of finding two electrons at the same position
- The average size of the atom $\langle r \rangle$ grows with the energy
- The ground state presents the less extended e e distribution and the ¹S the most extended one.

- The lower *E* the lower the probability of finding two electrons at the same position
- The average size of the atom $\langle r \rangle$ grows with the energy
- The ground state presents the less extended e e distribution and the ¹S the most extended one.
- Angular correlations $\langle \vec{r_1} \cdot \vec{r_2} \rangle$. Is negative for all of the systems; depends on the state.

• Angular correlations in momentum space $\langle \vec{p_1} \cdot \vec{p_2} \rangle$ As the kinetic energy

$$\langle T \rangle = \frac{1}{5} \left[\langle P^2 \rangle + \frac{1}{4} \langle p_{12}^2 \rangle \right]$$

• Angular correlations in momentum space $\langle \vec{p_1}\cdot\vec{p_2}\rangle$ As the kinetic energy

$$\langle T \rangle = \frac{1}{5} \left[\langle P^2 \rangle + \frac{1}{4} \langle p_{12}^2 \rangle \right]$$

 $^{\circ}~\langle p_{12}^2\rangle$ relative moment of a pair of electrons

• Angular correlations in momentum space $\langle \vec{p_1} \cdot \vec{p_2} \rangle$ As the kinetic energy

$$\langle T \rangle = \frac{1}{5} \left[\langle P^2 \rangle + \frac{1}{4} \langle p_{12}^2 \rangle \right]$$

- $^{\circ}~\langle p_{12}^2
 angle$ relative moment of a pair of electrons
- $^{\circ}~\langle P^2
 angle$ moment of the center of mass of a pair of electrons

• Angular correlations in momentum space $\langle \vec{p_1} \cdot \vec{p_2} \rangle$ As the kinetic energy

$$\langle T \rangle = \frac{1}{5} \left[\langle P^2 \rangle + \frac{1}{4} \langle p_{12}^2 \rangle \right]$$

- $^{\circ}~\langle p_{12}^2\rangle$ relative moment of a pair of electrons
- $^{\circ}~\langle P^2
 angle$ moment of the center of mass of a pair of electrons
- And

$$\langle \vec{p_1} \cdot \vec{p_2} \rangle = \langle P^2 \rangle - \frac{1}{4} \langle p_{12}^2 \rangle$$

• Angular correlations in momentum space $\langle \vec{p_1} \cdot \vec{p_2} \rangle$ As the kinetic energy

$$\langle T \rangle = \frac{1}{5} \left[\langle P^2 \rangle + \frac{1}{4} \langle p_{12}^2 \rangle \right]$$

- $^{\circ}~\langle p_{12}^2\rangle$ relative moment of a pair of electrons
- $\circ \langle P^2 \rangle$ moment of the center of mass of a pair of electrons
- And

$$\langle \vec{p_1} \cdot \vec{p_2} \rangle = \langle P^2 \rangle - \frac{1}{4} \langle p_{12}^2 \rangle$$

• Negative $\langle \vec{p_1} \cdot \vec{p_2} \rangle$ as is the case means that the main contribution to the kinetic energy comes from the interelectronic movement.

• Coulomb hole

• Coulomb hole

• Relative interelectronic charge distribution

• Relative interelectronic charge distribution

RESULTS: Ground state energy of Mg and Al

	HF	VMC-SC	VMC-CI	VMC^1
Mg	-199.61464	-199.9865(5)[85]	-200.0002(4)[88]	-200.0002(5)[8
	DMC-SC	DMC-CI(2)	DMC^1	$MR-SDCI^2$
	-200.0340(7)[96]	-200.0390(6)[97]	-200.0389(5)[97]	-200.02520[94
	HF	VMC-SC	VMC-CI	VMC^1
AI	-241.8767	-242.2685(5)[84]	-242.2751(5)[85]	-242.2124(9)[7
	DMC-SC	DMC-CI(2)	DMC^1	$MR-SDCI^2$
	-242.3200(7)[95]	-242.3250(7)[96]	-242.3265(10)[96]	-242.31673[94

¹Casula et al. JCP **119** 6500 (2003), ²Meyer et al. CP **191** 213 (1995), ³Chakravorty et al. PRA **47** 3649 (1993)

RESULTS: Excited states of Fe (au)

	PO	EP	JP	DEP	E>	kp.
Term	$3d^64s^2$	$3d^74s^1$	$3d^64s^2$	$3d^74s^1$	$3d^64s^2$	$3d^74s^1$
^{5}D	0.0		0.0		0.0	
${}^{5}F$		0.065		-0.001(3)		0.032
5P		0.137		0.055(4)		0.080
^{3}H	0.098		0.093(5)		0.089	
${}^{3}G$	0.125		0.124(4)		0.108	
${}^{1}G$		0.157		0.078(5)		0.112
^{3}D		0.175		0.097(4)		0.119
^{1}I	0.148		0.138(4)		0.134	
^{1}G	0.156		0.145(4)		0.136	

RESULTS: Ionization potential electron affinity of Fe

	NPOEP	RNPOEP	VMC^1	VMC
E(au)	-1262.42539	-1271.52694	-1263.20(2)	-1263.376(2)
IP(eV)	6.4372	6.7172		7.51(8)
EA(eV)	-2.4191	-2.5796		-0.11(8)

	GFMC	R-VMC	R-GFMC	Exp
<i>E</i> (au)	-1263.550(4)			
IP(eV)	7.6(2)	7.88(8)	7.9(2)	7.9024
EA(eV)		-0.27(8)		0.151(3)

¹ Foulkes et al. RMP **73** 33 (2001)

Exp from http://physics.nist.gov/PhysRefData/ASD/index.html

RESULTS: Excitation energy (au) of Fe, [Ar] $3d^{6}4s^{2-1}S$

	E	ΔE
POEP	-1262.254729	0.181594
VMC-JPOEP	-1263.203(4)	0.173(6)
GFMC-JPOEP	-1263.34(4)	0.24(5)
Ion Pot		0.290408

Non correlated (POEP) and VMC gives an state within the discrete spectrum. GFMC gives a correction in the proper (experimental) direction

RESULTS: Ionization potential (eV)

	OEP	VMC(1)	VMC(2)	DMC(1)	DMC(2)	Exp
Li	5.3419138	5.3926(5)		5.3914(4)		5.39
Be	8.0444562	8.807(4)	9.258(8)	9.051(2)	9.3199(4)	9.32
В	7.9317234	8.376(3)	7.933(4)	8.452(3)	8.153(3)	8.30
С	10.786462	11.343(5)	10.950(4)	11.410(7)	11.129(5)	11.26
Ν	13.957512	14.686(5)	14.351(5)	14.713(5)	14.487(5)	14.53
0	11.885734	13.46(1)		13.62(2)		13.62
F	15.718087	17.41(1)		17.44(1)		17.42
Ne	19.844827	21.630(3)		21.660(4)		21.56

RESULTS: Electron affinity (eV)

	OEP	VMC(1)	VMC(2)	DMC(1)	DMC(2)	Exp
Li	-0.122311	0.365(2)	0.5728(8)	0.559(2)	0.619(1)	0.618049
В	-0.267741	0.238(3)	0.006(4)	0.337(4)	0.177(3)	0.279723
С	0.550339	1.291(5)	1.101(4)	1.336(8)	1.219(5)	1.262118
0	-0.535772	1.31(1)		1.36(2)		1.461112
F	1.363416	3.39(2)		3.44(1)		3.4011887

(1) and (2) stand for one or two configurations in the trial wave function.

CONCLUSIONS AND PERSPECTIVES

• Variational Monte Carlo and Quantum Monte Carlo have been used to study electronic structure of atoms

CONCLUSIONS AND PERSPECTIVES

- Variational Monte Carlo and Quantum Monte Carlo have been used to study electronic structure of atoms
- Relativistic corrections are included perturbativelly

CONCLUSIONS AND PERSPECTIVES

- Variational Monte Carlo and Quantum Monte Carlo have been used to study electronic structure of atoms
- Relativistic corrections are included perturbativelly
- Densities, excitation energies, ionization potential and electron affinities are calculated and compared with the experimental results
- Variational Monte Carlo and Quantum Monte Carlo have been used to study electronic structure of atoms
- Relativistic corrections are included perturbativelly
- Densities, excitation energies, ionization potential and electron affinities are calculated and compared with the experimental results
- Study of correlation and relativistic effects

• Improvement of the trial wave function.

- Improvement of the trial wave function.
- Extend the study to more atoms

- Improvement of the trial wave function.
- Extend the study to more atoms
- Consider relativity and correlations simultaneously, at least in VMC

- Improvement of the trial wave function.
- Extend the study to more atoms
- Consider relativity and correlations simultaneously, at least in VMC
- Study molecular systems

- Improvement of the trial wave function.
- Extend the study to more atoms
- Consider relativity and correlations simultaneously, at least in VMC
- Study molecular systems
- Thank you

