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Quantum Monte Carlo methods

• Provide the exact ground state energy of many boson

• Provide a very accurate ground state energy of many fermion

• Based on random walks on the configuration space

• Developed about 40 ago for nuclear problems

• First seventies applications to liquid helium at zero temperature

• First eighties applications to electronic structure of atoms

• A simplification of the method was developed in that period

• Nowadays used for homogeneous and non homogeneous
systems
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Electronic structure of atoms

• Experimental ionization potentials, electron affinities and
excitation energies are known very accurately

• Hartree-Fock is the starting point theoretically. Not very reliable

• Importance of correlations and relativistic effects

• The ions are hard to describe

• Quantum Chemistry methods (CI and CC) have been applied for
some cases
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Electronic structure of atoms

• Quantum Monte Carlo have been mostly used for the ground
state of light Z ≤ 10 atoms

• Quantum Monte Carlo can be applied to some excited states.
Wave functions with the proper values of the angular momentum
and parity are needed

• For heavier systems no extra technical difficulties arise.
◦ The computational time grows
◦ Electron density becomes more inhomogeneous (shell

structure, the size of the atoms hardly grows with N )
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• The convergence of the Monte Carlo is reduced

• For heavier systems the importance of relativistic effects
increases
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Importance of relativity and correlations

• For the ground state energy relativistic effects are MORE
important than correlations for Z ≥ 12.

ERel −EHF: Relativistic correction, EDMC −EHF: Correlation
energy, EVMC −EHF: Correlation Energy
∆E ≤ 2 h Atomic units
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Importance of relativity and correlations

• For the ground state energy relativistic effects are MORE
important than correlations for Z ≥ 12.

Left 19 ≤ Z ≤ 36, 0 ≤ ∆E ≤ 60

Right 37 ≤ Z ≤ 54, 0 ≤ ∆E ≤ 250

Relativistic correction, VMC Correlation energy
Atomic units
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• Relativistic effects many take place mainly in the inner core

• Less importance is expected for differences of energies of
configurations differing in the outermost shells.
Correction to the Ionization potential in atomic units
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Importance of relativity and correlations

• Ionization Potential

Ionization potential Left 2 ≤ Z ≤ 10 (Ne) Right 11 ≤ Z ≤ 18 (Ar)
Points: experimental, HF, Relativity, Correlations,
Relativity+Correlations
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Importance of relativity and correlations

• Electron Affinity

Relativistic correction, Correlation energy, Non relativistic non
correlated
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Importance of relativity and correlations

• Low lying spectrum of the Fe atom

POEP no relativity no correlations, JPOEP correlations without
relativity, RPOEP relativity without correlations,
←
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Variational Monte Carlo

• In order to get accurate results from Quantum Monte Carlo is
convenient to have an accurate wave function for the system

• Having an approximate wave function containing the most
relevant dynamical elements of the system is important by itself

• A functional form is chosen with some free parameters fixed
variationally

• Approximate description of other properties than the energy
such as electron densities
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Variational Monte Carlo

• Non-relativistic calculation

• Monte Carlo quadrature is used for calculating the expectation
values of the energy

• This allows for any form of the trial wave function (no analytic
integral is needed)

• Compact form of the wave functions with a small number of free
parameters are used typically

• Energy minimization or variance minimization or a mixture of
both is employed to fix the free parameters
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Variational Monte Carlo

• In the problem of the electronic structure of atoms the following
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Ψt(R) = F (ri, rij)Φ (1)
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Variational Monte Carlo

• In the problem of the electronic structure of atoms the following
ansatz is widely used

Ψt(R) = F (ri, rij)Φ (5)

◦ Φ, the model function, is a Slater determinant of a linear
combination of them, usually with the proper L and S values
of the state

◦ F is a generalized Jastrow factor

• In Φ the inter-electronic distance, rij is not included explicitly

• Φ is fixed by using Hartree-Fock, Optimized Effective Potential or
Multi-Configuration Hartree-Fock methods.
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Variational Monte Carlo

• The linear coefficients of the Multi-Configuration expansion can
be optimized along with the Jastrow factor
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Variational Monte Carlo

• The linear coefficients of the Multi-Configuration expansion can
be optimized along with the Jastrow factor

• This ansatz provides accurate results for atoms and cations up
to 36 electrons Buendía et al. CPL 436 352 (2007)

• Modifying the orbitals in the Monte Carlo optimization is harder.

• Very accurate VMC and DMC have been very recently obtained
using back-flow and hundreds of determinants for 3 ≤ Z ≤ 10

atoms, Brown et al. JCP 126 224110 (2007)
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Variational Monte Carlo

• It is important for F to include dependence on ri, the distance of
the electron i to the nucleus.
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Variational Monte Carlo

• It is important for F to include dependence on ri, the distance of
the electron i to the nucleus.

VMC Ground state energy of some atoms in hartree. Second
rows percentage of correlation energy. Fee only e-e correlations

and Fee−en e-e and e-n correlations.

Atom HF Fee Fee−en Exact

Be -14.57302313 -14.6073(2) -14.64672(2) -14.66736

36 78

N -54.40093415 -54.447(1) -54.5526(2) -54.5892

25 80

Ne -128.5470980 -128.621(1) -128.8930(7) -128.9376

19 89
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Variational Monte Carlo

• A parameterization of the correlation factor leading to accurate
results is

F = e
P

i<j
Uij (6)

and

Uij =

Nc
∑

k=1

ck(r̄mk

i r̄nk

j + r̄nk

i r̄mk

j )r̄ok

ij (7)

where

r̄i =
b ri

1 + b ri

, r̄ij =
d rij

1 + d rij
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• A parameterization of the correlation factor leading to accurate
results is

F = e
P

i<j
Uij (8)

and

Uij =

Nc
∑

k=1

ck(r̄mk

i r̄nk

j + r̄nk

i r̄mk

j )r̄ok

ij (9)

where

r̄i =
b ri

1 + b ri

, r̄ij =
d rij

1 + d rij

• mk, nk and ok are given, b and d are usually fixed to one and ck

are the free parameters
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Variational Monte Carlo

• The functional form is based on a averaged back-flow type
correlation
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Variational Monte Carlo

• The functional form is based on a averaged back-flow type
correlation

• Presents the correct long and short range behaviors expected
for this correlation

• The total energy, and the variance present a simple dependence
on the free parameters.

• The electron-electron cusp condition is imposed exactly.

• This is an analytic property of the exact wave function that leads
to a faster convergence of approximate wave functions and
condition and reduces the statistical error of Monte Carlo
simulations (removes some divergences of the local energy)
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Quantum Monte Carlo

• Calculates numerically the Green’s function of a quantum system
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Quantum Monte Carlo

• Calculates numerically the Green’s function of a quantum system

• The Green’s function is built as a large set of random walks

• The dynamics of the random walks is given by a probability
distribution function and a transition probability

• The probability distribution must be non-negative. This leads to
the sign problem

• If the nodes are known approximately, an upper bound to the
exact energy is obtained
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Quantum Monte Carlo

• Several algorithms have been proposed to produce the random
walks
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• Several algorithms have been proposed to produce the random
walks
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◦ Diffusion Monte Carlo
◦ Green’s function Monte Carlo

• In order to apply Quantum Monte Carlo is very convenient to
have an approximate wave function of the system Nodal surface
and Importance Sampling
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Quantum Monte Carlo

• Several algorithms have been proposed to produce the random
walks

• Here we shall focus on two of them that provide the same results
◦ Diffusion Monte Carlo
◦ Green’s function Monte Carlo

• In order to apply Quantum Monte Carlo is very convenient to
have an approximate wave function of the system Nodal surface
and Importance Sampling

• If no importance sampling is used, the statistical error would be
unacceptable
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Quantum Monte Carlo

• The random walks are done by proposing moves in the
configuration space
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• The random walks are done by proposing moves in the
configuration space

• The moves are accepted or refused according to a given
transition probability and the probability distribution function

• If too many moves are refused the algorithm is inefficient and the
statistical error is big

• Importance sampling is a technique that favors moves that are
likely to be accepted. Efficiency is greatly improved

• Importance sampling needs an approximate wave function. Ideal
importance sampling is done with the exact wave function.

• Wave function and its derivatives must be computed to propose
the move
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Quantum Monte Carlo: Diffusion Monte Carlo

• In the Diffusion Monte Carlo, an approximate Green’s function is
sampled
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Quantum Monte Carlo: Diffusion Monte Carlo

• In the Diffusion Monte Carlo, an approximate Green’s function is
sampled

• A parameter, called time step, controls the approximation. In the
limit of zero time step the exact energy is obtained

• Finite time step is needed for carrying out the simulation

• Simulations at different time steps. The energy is obtained by
extrapolation

• For atoms, the larger Z the smaller the time steps
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Quantum Monte Carlo: Diffusion Monte Carlo

• The value of the extrapolated energy has a systematic error due
to the approximate nodal surface
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• The value of the extrapolated energy has a systematic error due
to the approximate nodal surface

•
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Quantum Monte Carlo: Green’s Function Monte Carlo

• The exact Green’s function (with the nodal error) is sampled

• The Green’s function is expanded in a Born series.

• To build the series an approximate Green’s function is used

• The series is summed exactly by using Monte Carlo.

• The results coincide with the extrapolated Diffusion Monte Carlo

Ground state energy of the Beryllium atom in hartree

Method Single Configuration Two Configurations

VMC -14.64625(4) -14.66282(3)

DMC -14.65740(8) -14.66710(4)

GFMC -14.65747(8) -14.66717(5)

HF -14.57302313

Exact -14.66736
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Monte Carlo Methods: Performance

•
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• The correlation energy is the difference between the energy
obtained in a given approximation and the Hartree-Fock energy

• For atoms and cations with less than 18 electrons the non
relativistic energy has been estimated. Is taken as exact here.
←
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RELATIVISTIC CORRECTIONS

• Optimized Effective Potential Method

• Hamiltonian
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Optimized Effective Potential Method

• Solution of the N electron problem not including correlations

• Approximation to the Hartree-Fock method (relative differences
below 0.01%)

• Variational approach based on trial wave functions written as
linear combination of Slater determinants

• The trial function is taken to have the angular momentum of the
state under study

• Can be single or multi configuration anstatz
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Optimized Effective Potential Method (OEP)

• The occupied orbitals are eigenfunctions of a single particle
hamiltonian
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Optimized Effective Potential Method (OEP)

• The occupied orbitals are eigenfunctions of a single particle
hamiltonian

• The potential in the single particle hamiltonian is taken to be
central

• With these orbitals the Slater determinants are build

• Then the expectation value of the N -electron hamiltonian is
evaluated

• The total energy is a functional of the effective potential.
Optimized potential fixed variationally.
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Optimized Effective Potential Method
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Optimized Effective Potential Method

• The method can be straightforwardly extended to
multi-configurations. All of the orbitals are eigenfunctions of the
same single particle hamiltonian

• The method can be straightforwardly extended to relativistic
hamiltonian. No perturbative treatment of relativistic effects (at
this non correlated level)

• The method can be used for excited states. No problems with
orthogonality appear.

• The equations can be solved very accurately.

• Numerical solution of the single-particle Schrödinger or Dirac
equation; Parameterization of the effective potential
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Optimized Effective Potential Method: Algorithm

• The terms are built in terms of the configuration, either single
configuration or multi-configuration. The occupied orbitals are
selected and the coupling coefficients are calculated
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Optimized Effective Potential Method: Algorithm

• The terms are built in terms of the configuration, either single
configuration or multi-configuration. The occupied orbitals are
selected and the coupling coefficients are calculated

• Starting values for the parameters of the effective potential are
proposed. Potential is taken to be central.

• The occupied orbitals are calculated as the single particle
eigenfunctions of the Schrödinger or Dirac equation with the
potential

• The trial wave function is built and the expectation value of the
N -electron relativistic hamiltonian is computed

• The energy is minimized with respect to the parameters of the
effective potential
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Hamiltonian

• The relativistic hamiltonian used here is

H =
N

∑

i=1

hD(i) +
∑

i<j

Vij (10)

→
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Hamiltonian

• The relativistic hamiltonian used here is

H =
N

∑

i=1

hD(i) +
∑

i<j

Vij (11)

→

• hD(i) is the Dirac hamiltonian with a central potential Vn(r)

hD(i) = c~αi · ~pi + c2βi + Vn(r)

Vn(r) is the electrostatic potential of a sphere with uniform charge
distribution
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Hamiltonian

• The two body potential Vij in
◦ Coulomb gauge
◦ Only two-body interactions
◦ Only one photon-exchange (lowest order)
◦ Keeping to order 1/c2 inclusive (Breit)

•

Vij =
1

rij

−B(i, j)

B(i, j) =
~αi · ~αj

2rij

−
(~αi · ~rij)(~αj · ~rij)

2r3
ij
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Relativistic Optimized Effective Potential solution

• The spinors in the Slater determinant are taken to be the
eigen-functions of the following Dirac hamiltonian

hD[V ] = c~α · ~p + c2β + V (r)
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Relativistic Optimized Effective Potential solution

• The spinors in the Slater determinant are taken to be the
eigen-functions of the following Dirac hamiltonian

hD[V ] = c~α · ~p + c2β + V (r)

• V (r) is the parameterized effective potential

• All of the occupied orbitals are obtained by solving the equation

hD[V ]φnljm(q) = ǫnjlφnljm(q)

• With the spinors the expectation value of the
relativistic hamiltonian is evaluated

• The total energy is minimized with respect to the parameters of
the effective potential
←
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RESULTS:Excited states of C isoelectronic

• We study here the 3P, 1D and 1S, terms of the configuration

1s22s22p2
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RESULTS:Excited states of C isoelectronic

• We study here the 3P, 1D and 1S, terms of the configuration

1s22s22p2

• Effects of electronic correlations with Z

• Order of the states. Interpretation of Hund rules

• Variational Monte Carlo

• Multi-Configuration model function

Ψt = FΦ, [2s22p2, 2p4, 2s2p23s, 2s2p23p, 2p2p23d]
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RESULTS:Excited states of C isoelectronic (au)

Ion Term EPOEP EMCOEP E E1
exact

C 3P −37.68862 −37.75273[40.1] −37.8295(1)[90.1] −37.8450

1D −37.63132 −37.69311[36.9] −37.7829(1)[90.6] −37.7986

1S −37.54982 −37.62339[37.4] −37.7287(1)[91.0] −37.7464

N+ 3P −53.88801 −53.95734[41.6] −54.0398(1)[91.2] −54.0545

1D −53.80713 −53.87305[37.1] −53.9697(3)[91.6] −53.9847

1S −53.68973 −53.77473[39.4] −53.8882(1)[91.9] −53.9056

Ne4+ 3P −120.54357 −120.62591[43.9] −120.7149(2)[91.4] −120.7310

1D −120.39679 −120.47959[42.2] −120.5794(1)[93.1] −120.5930

1S −120.18032 −120.30168[46.8] −120.4247(1)[94.2] −120.4398

1 Davidson et al. Phys. Rev. A 44, 7071 (1991) and
http://physics.nist.gov/PhysRefData/ASD/index.html
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RESULTS:Excited states of C isoelectronic

• Correlation energy around 40% with F = 1 and higher than 90%
with the correlation factor
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RESULTS:Excited states of C isoelectronic

• Correlation energy around 40% with F = 1 and higher than 90%
with the correlation factor

• The virial theorem is fulfilled with accuracy higher than 99.9%.
The energetic ordering of the states is governed by
◦ Ven = Z〈r−1〉 electron-nucleus potential energy
◦ Vee = 〈r−1

12 〉 electron-energy potential energy

• The lower E the higher |Ven|

• For C and N+ the lower E the greater Vee

• For the other cations the lower E the greater Vee
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RESULTS:Excited states of C isoelectronic

• The lower E the lower the probability of finding two electrons at
the same position
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RESULTS:Excited states of C isoelectronic

• The lower E the lower the probability of finding two electrons at
the same position

• The average size of the atom 〈r〉 grows with the energy

• The ground state presents the less extended e− e distribution
and the 1S the most extended one.

• Angular correlations 〈~r1 · ~r2〉. Is negative for all of the systems;
depends on the state.
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RESULTS:Excited states of C isoelectronic

• Angular correlations in momentum space 〈~p1 · ~p2〉 As the kinetic
energy
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RESULTS:Excited states of C isoelectronic

• Angular correlations in momentum space 〈~p1 · ~p2〉 As the kinetic
energy

〈T 〉 =
1

5

[

〈P 2〉+
1

4
〈p2

12〉

]

◦ 〈p2
12〉 relative moment of a pair of electrons

◦ 〈P 2〉 moment of the center of mass of a pair of electrons

• And

〈~p1 · ~p2〉 = 〈P 2〉 −
1

4
〈p2

12〉

• Negative 〈~p1 · ~p2〉 as is the case means that the main contribution
to the kinetic energy comes from the interelectronic movement.
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RESULTS:Excited states of C isoelectronic

• Relative interelectronic charge distribution

Quantum Monte Carlo for the electronic structure of atomic systems – p.44/52



RESULTS:Excited states of C isoelectronic

• Relative interelectronic charge distribution

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35

∆
h
(r

12
)

Zr12 (au)

(b1) 1D −3 P C
N+

O2+

F3+

Ne4+

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35

∆
h
(r

12
)

Zr12 (au)

(b2) 1S −1 D C
N+

O2+

F3+

Ne4+

Quantum Monte Carlo for the electronic structure of atomic systems – p.44/52



RESULTS:Ground state energy of Mg and Al

HF VMC-SC VMC-CI VMC1

Mg -199.61464 -199.9865(5)[85] -200.0002(4)[88] -200.0002(5)[8]

DMC-SC DMC-CI(2) DMC1 MR-SDCI2

-200.0340(7)[96] -200.0390(6)[97] -200.0389(5)[97] -200.02520[94]

HF VMC-SC VMC-CI VMC1

Al -241.8767 -242.2685(5)[84] -242.2751(5)[85] -242.2124(9)[72]

DMC-SC DMC-CI(2) DMC1 MR-SDCI2

-242.3200(7)[95] -242.3250(7)[96] -242.3265(10)[96] -242.31673[94]

1Casula et al. JCP 119 6500 (2003), 2Meyer et al. CP 191 213
(1995), 3Chakravorty et al. PRA 47 3649 (1993)
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RESULTS:Excited states of Fe (au)

POEP JPOEP Exp.

Term 3d64s2 3d74s1 3d64s2 3d74s1 3d64s2 3d74s1

5D 0.0 0.0 0.0
5F 0.065 -0.001(3) 0.032
5P 0.137 0.055(4) 0.080
3H 0.098 0.093(5) 0.089
3G 0.125 0.124(4) 0.108
1G 0.157 0.078(5) 0.112
3D 0.175 0.097(4) 0.119
1I 0.148 0.138(4) 0.134

1G 0.156 0.145(4) 0.136

Quantum Monte Carlo for the electronic structure of atomic systems – p.46/52



RESULTS:Ionization potential electron affinity of Fe

NPOEP RNPOEP VMC1 VMC

E(au) -1262.42539 -1271.52694 -1263.20(2) -1263.376(2)

IP(eV) 6.4372 6.7172 7.51(8)

EA(eV) -2.4191 -2.5796 -0.11(8)

GFMC R-VMC R-GFMC Exp

E (au) -1263.550(4)

IP(eV) 7.6(2) 7.88(8) 7.9(2) 7.9024

EA(eV) -0.27(8) 0.151(3)

1 Foulkes et al. RMP 73 33 (2001)
Exp from http://physics.nist.gov/PhysRefData/ASD/index.html
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RESULTS:Excitation energy (au) of Fe, [Ar]3d6
4s

2 1
S

E ∆E

POEP -1262.254729 0.181594

VMC-JPOEP -1263.203(4) 0.173(6)

GFMC-JPOEP -1263.34(4) 0.24(5)

Ion Pot 0.290408

Non correlated (POEP) and VMC gives an state within the discrete
spectrum. GFMC gives a correction in the proper (experimental)
direction
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RESULTS: Ionization potential (eV)

OEP VMC(1) VMC(2) DMC(1) DMC(2) Exp

Li 5.3419138 5.3926(5) 5.3914(4) 5.39

Be 8.0444562 8.807(4) 9.258(8) 9.051(2) 9.3199(4) 9.32

B 7.9317234 8.376(3) 7.933(4) 8.452(3) 8.153(3) 8.30

C 10.786462 11.343(5) 10.950(4) 11.410(7) 11.129(5) 11.26

N 13.957512 14.686(5) 14.351(5) 14.713(5) 14.487(5) 14.53

O 11.885734 13.46(1) 13.62(2) 13.62

F 15.718087 17.41(1) 17.44(1) 17.42

Ne 19.844827 21.630(3) 21.660(4) 21.56
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RESULTS: Electron affinity (eV)

OEP VMC(1) VMC(2) DMC(1) DMC(2) Exp

Li -0.122311 0.365(2) 0.5728(8) 0.559(2) 0.619(1) 0.618049

B -0.267741 0.238(3) 0.006(4) 0.337(4) 0.177(3) 0.279723

C 0.550339 1.291(5) 1.101(4) 1.336(8) 1.219(5) 1.262118

O -0.535772 1.31(1) 1.36(2) 1.461112

F 1.363416 3.39(2) 3.44(1) 3.4011887

(1) and (2) stand for one or two configurations in the trial wave function.
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CONCLUSIONS AND PERSPECTIVES

• Variational Monte Carlo and Quantum Monte Carlo have been
used to study electronic structure of atoms
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CONCLUSIONS AND PERSPECTIVES

• Variational Monte Carlo and Quantum Monte Carlo have been
used to study electronic structure of atoms

• Relativistic corrections are included perturbativelly

• Densities, excitation energies, ionization potential and electron
affinities are calculated and compared with the experimental
results

• Study of correlation and relativistic effects
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CONCLUSIONS AND PERSPECTIVES

• Improvement of the trial wave function.

• Extend the study to more atoms

• Consider relativity and correlations simultaneously, at least in
VMC

• Study molecular systems

• Thank you
←
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