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Modern quantum optics: various methods for  
two-photon population transfer in atoms and simple molecules:
- Raman scattering,          
- stimulated Raman, 
- Rapid Adiabatic Passage (RAP)  
- STIimulated Raman Adiabatic Passage (STIRAP),
- Stark-shift-Chirped Rapid Adiabatic Passage (SCRAP),
- ….

Typical problem of atomic/molecular spectroscopy: 
how to provide the population transfer  between the levels 
which cannot be directly related by dipole transition?

Is it possible to use these methods for other systems:
- exploration of electronic of  metal clusters
- transport of BEC ?
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Two-photon population transfer methods:
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Dressed states in STIRAP:
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scattering:
- pump + Stokes
- transfer up to 30%

STImulated Raman 
Adiabatic Passage (STIRAP):
- Stokes + pulse
- transfer up to 100% !!!

-adiabatic process
- counterintuitive

pulse order
- partial overlap
- dark state

K. Bergman, et al,
Rev. Mod. Phys., 70, 1003 (1998)



Is it possible to apply the fascinating methods 
of modern quantum optics to:

- exploration of electronic spectra in metal clusters,
- transport of BEC in multi-well traps or 

between BEC components  

?

Atomic clusters: why not?

Transport of 
Bose-Einstein condensate: why yes?
Because TPP and BEC tunneling  
are similar physically and mathematically!  

But detrimental non-linear impact of interaction between BEC atoms!

1 3

2 321

=E1
PΩ (t)

E1Ω (t)S

12d (t) 23d (t)

K. Eckert et al, PRA, 
70, 023606 (2004)

But the problems of:
- extremely short lifetimes (10-1000 fs),
- competition with plasmon mode,
- strong dynamical stark shifts from 

intense pulses



Atomic clusters: off-resonant stimulated Raman transfer 
to the quadrupole 1eh state at 0.8 eV
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ORSR works! But maybe low population?
STIRAP?           SCRAP!

- Time-dependent  HF
- Kohn-Sham functional
- LDA Perdew-Wang xc
- jellium for ions
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STIRAP transport of BEC between the wells

E.M. Graefe et al, PRA, 73, 013617 (2006)
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can be varied by controlling the debts 
or separations of the wells.
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BEC/STIRAP model:

Equations for 3-component BEC:
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Canonical  transformation to new unknowns:
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BEC transport:
-- well 1
-- well 2
-- well 3

STIRAP:
- complete at

- still survives at

Λ=D=0

Λ,D < 0.5

STIRAP takes place even under (modest) interaction 
and so can be applied to realistic BEC! 
Geometric phases!
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Conclusions and Outlook
Particular two-photon population transfer methods can be applied to:

atomic clusters: ORSR, 1eh modes, s-p electron spectra               

Perspectives: 
- geometric phases,
- quantum informatics (STIRAP of atoms), 
- multi-component BEC, …

Methods of modern 
quantum optics

Thanks to similarity between multi-photon and tunneling schemes

-Spectroscopy of atomic clusters 
- Transport of BEC, atoms, …
- …

Single-particle (mean field) spectra
- sensitive to cluster structure and thus 

deliver info on diverse cluster features, 
- robust test for theory,

BEC: STIRAP transport in multi-well traps

STIRAP??
SCRAP!

1-photon, 2-photon, multiphoton population transfer schemes  



Equations describe two scenarios:
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- Three-component BEC in  
single-well trap,

- coupling by pump and 
Stokes laser pulses,

-
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3) Single-particle (mean field) spectra
- sensitive to cluster structure and thus 
deliver info on diverse cluster features, 

- robust test for theory,
- still poorly studied, hot topic!

Spectra of valence electrons:
1) collective modes (plasmons) 

2) infrared 1eh excitations

eh h ee = e - e

FE2,1eh
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intense lasers with 
ultra-short (fs) pulses 

Problems:
- very  short lifetimes (10-1000 fs)
- strong dynamical Stark shifts
- competition with plasmons

Infrared 1eh modes provide direct access 
to s-p spectrum above Fermi level



Model:

0( ) ( ) ( , )L
LD t drr Y r tρ= Ω∫-- expectation values of multipole moments

-- Fourier transformation into frequency domain

-- Time Dependent Local Density Approximation (TDLDA)

-- propagation of  single-electron wave function in time

-- Kohn-Sham functional, Perdew-Wang xc

( ) ( )i tD dte D tωω = ∫

-- axially deformed cluster

-- quadrupole (LM=20) infrared 1eh state  at 0.75 eV

-- jellium approximation for ions

11Na+

-- coherent (classical) laser field

2E(t)cos(ωt), E(t) = sin (t/T), T = 100 - 500 fs

-- including photoemission through absorption boundary
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STImulated Raman Adiabatic Passage (STIRAP): basic points
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Rev. Mod. Phys., 70, 1003 (1998)

Main requirements:
• Two-photon resonance:
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• Overlapping pulses, counterintuitive order

• Adiabatic evolution:
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STIRAP provides up to 100% 
of the population transfer!

• Dark state,  no contribution from |2> at all !

- Rabi frequency2 2
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Direct two-photon population:
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Probe pulse follows the pump pulse  with 
a large delay 600 fs so as to detect only
the  endurant quadrupole mode

Endurant quadrupole oscillations
result in PES satellites:
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- Principle signature of STIRAP:
maximal population with plateau at
counterintuitive order of pulses 

K. Bergman, H. Theuer and B.W. Shore,
Rev. Mod. Phys., 70, 1003 (1998)

Population transfer between        and
states in Ne atom
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Maximal limit for 
stimulated Raman

Plateau:
The process is only sensitive
slightly sensitive to variation 
of laser parameters.     
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Overlapping time 
or laser intensity
must be large enough! 



+
11Na

Advantages of light deformed clusters:
-- safe size selection, well known shape, routinely available beams
-- dilute infrared 1eh spectra,

E20: [220]-[200]   99.9%
E21: [220]-[211]   99.5%
E22: [220]-[202]   99.6%

Access to:
-- cluster mean field
-- deformation effects

Every infrared quadrupole
mode is strictly dominated 
by one 1eh  configuration: 

-- 21 and 22  1eh-modes are fully driven by 
cluster deformation
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= 1-5 ps fs intense  lasers in TPP!1ehτ

V.O. Nesterenko, P.-G. Reinhard, W. Kleinig, 
and D.S. Dolci, PRA, v.70, 023205 (2004). 


