DARTMOUTH
%, |

RPMBT14

International Conference on
Recent Progress in Many Body Theories
July 16-20, 2007. Barcelona, Spain

Generalized Entanglement in Static and Dynamic

Quantum Phase Transitions

Lorenza Viola
Lorenza.Viola@Dartmouth.edu

People: i
Shusa Deng (Dartmouth) ;

Gerardo Ortiz (Indiana)

Howard Barnum (Los Ala
Manny Knill (NIST, B

Department of Physics and Astronomy, Dartmouth College

I



Taming “complexity” in many-body systems...

Goal: To probe, understand, and control quantum phases of matter
— both under equilibrium and nonequilibrium — conditions.

Prerequisite: To obtain qualitative and quantitative understanding of zero-temperature QPTs.

© Conceptual significance:

= Central challenge of condensed matter theory, atomic physics, quantum statistical mechanics
(coexistence/competition between multiple interactions and quantum orders...)

© Practical significance: [Greiner et al, Nature 2002]

— Material science and device technology; i » T
— Experimental quantum computation and p .ﬁ . * 3 a- Fa
simulation (ultracold atoms in optical lattices...) i
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Growing body of experimental work yet
theoretical understanding remains poor-...
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Chief difficulty: complexity of quantum correlations
in many-body states and dynamical evolutions...

Can ideas and tools from QIS help?

[Gegenwart et al, PRL 2002][Sadler et al, Nature 2006]

2/20



A natural QIS tool: Entanglement theory

Entanglement is intimately tied to inherent “complexity” of QI processing:

@ Can lead to quantum correlations between subsystems that admit no local classical interpretation

© Provides the defining resource for quantum communication
(quantum teleportation, superdense coding, communication complexity...)

@ Provides a necessary (not sufficient!) resource for pure-state quantum computational speed-up...

Amount of entanglement _,  Efficient (poly(n) resources)
upper bounded by poly(ny classical simulatability [Josza & Linden, JPA 2002:

Vidal, PRL 2003; Datta & Vidal, PRA 2007]

Pay-off for proper accounting of entanglement in many-body systems already impressive:

© Conceptual: Efficient representations of quantum states (MPS, PEPS); Area laws...
[Verstraete & Cirac, cmat/0407066; Eisert & Osborne, PRL 2006]

@ Computational: Improved renormalization-group methods for
= 1D lattice systems: time-evolving block decimation algorithms;
= Higher-dimensional lattice systems: PEPS, entanglement renormalization...
[Verstraete, Porras, Cirac, PRL 2004; Vidal, PRL 2004...]

@ Information-theoretic: Computational complexity of variational/DMRG approaches, and PEPS;
Efficient solvability of generalized mean-field Hamiltonians...

[Eisert, PRL 2006; Schuch et al, PRL 2006; Somma €t al, PRL 2006]
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Entanglement and quantum critical phenomena

Can entanglement theory provide a better understanding of QPTs?

* What is the nature and role of entanglement in a QPT?
 Can entanglement measures detect and classify QCPs>...

[Amico, Fazio, Osterloh, Vedral, RMP, qph/0703044]
Some of the results emerged from extensive analysis of ground-state entanglement:

= Pairwise entanglement (concurrence) detects QCPs
and obeys universal scaling laws in 1D and 2D models...

[Osborne & Nielsen, PRA 2002, J Vidal et al, PRA 2004;
Roscilde et al, PRL 2005...]

= Critical scaling of block entropy agrees with conformal field
theory...

dC(1)/dh

[Vidal et al, PRL 2003; Latorre et al, QIC 2004...]

= Localizable entanglement can be long-ranged despite finite
correlation length ...

[Verstraete et al, PRL2004..] |  * “un ° 0 TE s |

A
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still, with a few exceptions...

(1) Mostly bipartite entanglement...
(2) Mostly static/equilibrium scenarios...
(3) Mostly distinguishable degrees of freedom...

[Osterloh et al, Nature 2002]

Is the standard notion of entanglement sufficiently general?...

|
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(Some) limitations of subsystem-based entanglement

A basic fact: Entanglement is relative... H =~ H,\® Hy

© (Standard) entanglement is un-ambiguously defined only relative
‘O>A®|1>B_‘1>A®|O>B

to a preferred decomposition of # into subsystems: | Bell )= 5
A pure state in # 1s entangled iff it induces mixed subsystem states. )
© The choice of preferred subsystems is unproblematic in most QIS settings. é"i;%
Ah:ce

What about other physical settings?...

A compelling case: Quantum many-body systems

= How should entanglement be defined for states of indistinguishable particles?

[Eckert et al, Ann. Phys. 2002; Zanardi, PRA 2002; Kindermann, PRL 2006;
Wolf, PRL 2006; Banuls, Cirac, Wolf, qph/0705.1103...]
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— Particle or mode entanglement? Which set of modes (if any)?

= Which algebraic/operator language (spin, fermion, bosons...)?
The choice of preferred subsystems becomes problematic
in the presence of nontrivial physical or operational constraints.

|
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Desiderata for a generalized theory:

— Consistent with existing theory/results in well-characterized limits
— Directly applicable to arbitrary many-body systems and operator languages
- Flexible in incorporating physical constraints

A possible candidate:
Generalized Entanglement...
(GE)



The notion of GE

Keyword: Define GE relative to a distinguished subspace of observables.
[Barnum €t al, PRA 2003; PRL 2004]

© Steps toward GE:
(1) Recall that pure entangled states are those for which at least one subsystem-state is mixed.
(2) Consider states as positive linear functionals on operators:
H-state |[¢):  A:End(H) - R, AX)=Tr( |y {wX) =(¢|X]y)
A reduced state relative to €2 1s defined only by expectation values of observables in Q:
Q-state: w:Q - R, w=A|Q
(3) Observe that the set of Q-reduced states is convex:
X, yeC = px+(I—-p)yeC, pel0,1]
An Q-reduced state is pure iff it is extremal i.e., it cannot be written as a convex
combination of other reduced states.

Degree of entanglement directly determined by expectations of physical observables:

A pure state is generalized unentangled relative to Q if its
reduced state is pure (extremal), generalized entangled otherwise.

= Standard extension to mixed states:

A mixed state is generalized unentangled relative to Q if it
is a mixture of generalized unentangled pure states. Focus on pure states here...

|
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The Lie-algebraic GE setting

Keyword: Q is a (semisimple) Lie algebra £, irreducibly represented in .

© Natural GE measure: Let {x;} be a Hermitian, orthogonal basis for £. Define /-purity by
Alw)=K 2, [wIXlw)f

K is a global normalization factor chosen such that P,"®* =1 for all generalized unentangled |y ).
= Geometrical meaning:
P,(lg) =Tr ((Hﬁ|qj><w\)2> = Square length of projection of |¢ ){ ¢/| onto A.

= Invariance under group transformations: P, (Jw)) = P, (Dlv)), D=exp( |Z n X, )€G,n R

© Complete characterization of set of generalized-unentangled states:

A pure state is generalized unentangled relative to # iff itisa
Generalized Coherent State (GCS) of the Lie group generated by £.

|GCS(&)>=eXp(Zk o, A,—o, A )|REF ), x,€C

= GCSs have max A-purity; X
— GCSs have min invariant uncertainty... (ar)y =2, [< X{)—(X, >2]=<C2 — Pp

Most classical
states...
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Example |: Standard entanglement revisited

Bipartite setting: #H ~H,® Hg dim H,=m, dim Hg=n
0

= Means for manipulating/observing systems are restricted to

arbitrary local observables: &i%@
ho=h & f={A® | +1 ® B} =sum) & sun) Alice

= GCSs of SU(m) x SU(n) are all states reachable from |0),®|0); via local unitary transformations...

L : Natural generalization:
Multipartite setting:

Standard multipartite entanglement = GE relative to all local observables

Special case: N spin-1/2 particles

= Local spin observables are distinguished: A, = SU2), @ SW2), ... ® su(2)y=span{o, | a=x,y,z}

Proc¥)) =5 2, (@lotle)? =23 12 -1

» The local purity is proportional to the average subsystem purity (global entanglement).
[Meyer & Wallach, JMP 2002]

* Different choices of algebras can probe different aspects of quantum correlations.
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Example Il: GE without subsystems

System: A single spin-1 particle
— State space H ~ C3:

* Carries the spin-1 irrep of su (2) = span{ J., J,, J, } /
*h={CSA® fi_® h_}, CSA=span{J;}, fi_=span{J;}, A_=span{J_}
« |REF )=]j=1,m=1) jsthe highest-weight reference state.

X2 Vy° Yz
1010 1O—iO 1 0
Jo=—(1 0 1}, 3,=—=|i o —i|. 3,=[o 0 o
\/5010 \/EOiO 0 —1

— Assume that distinguished observables are linear in angular momentum: A = su (2)

o o O

» The reduced states may be identified with vectors of expectations of the generators:

Ay @ ((3,0,03,).(3,)) e R, with (3,)°+(3,)"+(3,)" < 1

* Pure states are those on the surface = SU(2) angular momentum spin coherent states:
(n-3)|g)==8), [§)=exp(g3.-E 3 )I1,-1), geC
* |1,—1),]1,1) are GCSs, |1,0)is not: | 1,0 ) is generalized entangled relative to su (2).

|1,0>~l(|1,1 YL 1|+]1,—1)(1,—1]) Indistinguishable from mixture
2 .
based on SU(2)-expectations...
— All pure states are unentangled relative to £ = su(3).

e ———————————
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Example lll: Fermionic GE

System: N spinless fermion modes e.g. spatial sites, momentum modes...

{Ci,cz}=6 {Ci’cj}zo’ {CiT’CTj}zo

ij
= Associate “local” resources with number-preserving fermionic operators:

t t ta ot
h= lL(N)=Span{c;fci—l,Cicﬁ_cici S Cjci} 1<i<]<N

27 2 N2

2 <N 4 <N 1
P, (N)(|W>)=WZ,-<,--=1 [<CT1 c;.+cj.c;)~(cl¢c;.—cl.c >2]+WZ,-=1 <C1; Ci __>

* The GCSs of 1 (N) are the fermionic product states = Slater determinants
|Ges(N))=]1, ¢lIvAC)
e The fermionic purity Pu(N) = 1 for any Slater determinant (with any number of fermions);

Pu(N) < 1 for any other (non-extremal) fermionic state e.g., N=2, use Jordan-Wigner mapping:

¥)=—=(]01)=]10)) <> —=(c{|[VAC)—c}|VAC)) Mode-entangled (s1(2)® s1(2)),
V2 V2
u(N)-unentangled
\‘P>=%(|OO>—|11>) -« > %(|VAC>—C{C§|VAC>) Max (N)-entangled

— Fermionic GE is independent on both the set of modes

c - U.C.,, UeMat(NXN).
and the operator language chosen! J Zm m ( )
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Case study: Anisotropic XY model in alternating tranverse field
T z
d‘l;J Q‘ AR g ﬂB=hi¢5
1 2 3 4 N

© Hamiltonian for a regularly inhomogeneous spin-1/2 chain (N even, periodic BCs, o, T,):

H=-3. <(1;y)"ix“ix“+ (17)“909“)@?1 (h=(~)6)o"

y € [0, 1]: anisotropy; h € [—x, +x]: magnetic field strength; § € [—«, +»|: alternation strength
& = 0: Anisotropic XY model in transverse magnetic field [Somma et al, PRA 2004]
6 >0, y=1:Ising model in alternating transverse field [Derzhko et al, PRE 2004]
y =0: Isotropic XX limit

@ Symmetries: |
= For generic values of the parameters, H has a global discrete Z,-symmetry, Z,* = H'}'zl o,

which is spontaneously broken in the thermodynamic limit.

= For specific values of the parameters, H may develop additional symmetries:

* y=0: Continuous u (1)-symmetry under arbitrary z-rotation;
* h=0: Discrete symmetry under global x-rotation followed by lattice translation:

W=TZX Z>=0"_o), T:j-> j+1

e EEEEEEE———
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Exact solution

Steps:

(1) Generalized even-odd Jordan-Wigner transformation:
al L =(T122 oMol by =(TT2 0 (=oD)oly . j=1l...N/2
(2) Fourier-transform to momentum modes:
al=%2?zle‘ “@-Val |, bF%ZT:lei “@pl, ke K++K={i%,i%,...,i(i—l)}

(3) Block diagonalization/Bogoliubov quasiparticle transformation:

4

n=1,...
H =Zke|<+ 'A‘?;I_IkAk:ZkeK+ Ek,nyl,nyk,n

a, 2(h+6) 0 J, r,
A _ al, o - 0 —2(h+6) -—-T, Jy J.,=—2cos(k),
“1b | ¢ J, —T', 2(h=9¢) 0 " I'.=—2iysin(k)
b, T, J, 0 —2(h—24)

— Zero temperature ground-state energy and ground-state structure:

EGS=Z|(GK+(EK,1+GK,2>' €,1<0, €, ,<O

iGs)=T1,_, (up+u;afa’, +uibl bl +utal b’ +u;al, bl+ufala’, bl b, )|VAC)
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Static quantum criticality properties

© Quantum phases:

QCPs (h,, &, y.) are determined by zeroes of ¢, , .
Quantum phase boundaries:

h’=6%+1

5’=h*+y” of Paramagnet

Ferromagnet ] Paramagnet -

= PM/FM phase boundary is characterized by
2" order broken-symmetry QPT;

= Ground state develops weak singularities at
(hes 8., y)=(0, 8= +y)

(h 5 ) (+1 § 0) %25 2 15 1 05 0 05 1 15 2 25
@ %0 YJTAT S 07 Static field strength, h

Alternation strength, &

4™ order broken-symmetry QPTs occur at these points.

= |n the isotropic limit, an insulator-metal Lifshitz QPT occurs, with no symmetry order parameter.

Focus on broken-symmetry QPTs...
@ Universality classes:

Standard finite-size scaling analysis reveals the emergence of new quantum critical behavior in the
presence of alternation:

Ising universality class: v=1,z=1

Alternating universality class: v=2,z=1

|
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GE as a QPT indicator: Phase diagram

© Relevant (Lie) algebras of observables acting on the 2N-dimensional spin space:
#(N)= {number-conserving quadratic fermionic operators } < s0(2N)

= The GS is always a GCS of so(2N), GE relative to so(2N) carries no information about QCPs.
— The GS becomes a GCS of #(N) in the fully polarized PM limit...

P, (N)(lGS>)=%Zk (ala,—1/2)°+(a’ a_,—1/2)+{(bl b, —1/2)*+(bl b_ —1/2)+

+2|¢al b P +2]¢al  b_ )|’

b
o8 Py e
© Ground-state fermionic GE faithfullly 0.6 | .' |
portraits underlying quantum phase: N 0.4f . . 3
= Analytical result available for 6= 0; é 0.2 £ 0.25*P' WM . % -
= GE sharply detects PM-FM QPTs; g Ov% !MWWM_Z ***** Wwwwwwwmﬁ I
[Somma et al, PRA2004]  © °% %, o o
= Derivatives of GE develop singular > 1 4 i ' | |
behavior (only) at QCPs. °er i > Pu(N)ﬂD“‘mﬁ ' | |
08y | Sos 0 0.05 | |
As : 1 05 é) 05 1 : 15

Static field strength, h
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GE as a QPT indicator: Scaling properties

-11.5 T T T T T
@ Ground-state fermionic GE contains complete y =5=0.5, h =(1+52)05
information about static critical exponents: 12| N=1000
= Taylor-expand purity near QCP; <
Z 125+
. a”
Hmt... g
g -13+
= Ground-state fermionic GE is related to the o’
. . . £
fluctuations of the total fermionic number 135} w
B
rator... . -
operato Ising L 0.997 + 0.003 |
Unlversallty class. _1?14 —l?L.S —lé.6 —lé.4 —l?L.Z —1!3 —12‘.8 —12‘.6 —12‘.4 -15.2 12
Alternating In |h-h_|
universalityclass; o
e, ¥ =5=05,h=(82-y?)0> y =05, h=1, 5,=(h2-1)05
N=1000 N=1000
— O e
=
\-é -20.5+ o
o7l % 2
= e o
%—21.5* }{Xﬁ}( ;(ﬁ/yﬁz l
o 4
E 22+ /ﬁ/ﬁ %}/f(
2250 %/‘( - }/g/}( ]
a7~ 2.0 + 1.6e-5 oL 2.0 + 6.8e-5
'23':512 _11’.8 _11'.6 _11'.4 _11'.2 _1‘1 _16.8 _10‘.6 _16.4 _10‘.2 _1'0 _2?12 -11.8 -11.6 -11.4 -11.2 -1’1 -16.8 -16.6 -16.4 -16.2 -1’0
In |h-h,| In |5-8,]
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Dynamic QPTs and the Kibble-Zurek mechanism

Can nonequilibrium properties be predicted using equilibrium critical exponents?

Simplest dynamical scenario: Slow linear sweep of control parameter with constant speed 1
t—t,

9(t)—g.=——, T1,>0,t.=0
TqQ
= System response determined by relaxation time
ki 1
= ZN PR A = Gap between ground and first accessible excited state

Divergent in the thermodynamic limit for arbitrarily slow quenches: Critical slowing-down

KZM: Crossover from (approximately) adiabatic to impulse regime at freeze-out time

c(t)= 9()- 9| —  joprzvzsn | |
| g () < Adiabatic | Impulse | Adiabatic
. L. . . . el - 1 \ :
= Prediction for scaling of final density of excitations: % t=0 1t >
-v/(v
n(tF )NTQ vl [Zurek, Dorner, Zoller, PRL 2005; Dziarmaga, PRL 2005...]

still...

(1) What is the nature of the KZM? Does it apply only to 2™ order QPTs?...
(2) What features of the initial/final quantum phase are relevant?...
(3) How does dynamical scaling reflect into entanglement and/or observable properties?...

I |
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Non-equilibrium excitation density

(0))=TT, (ui

@ Final excitation density:

n(te =—<‘F

= Agrees with KZM prediction over appropriate Tg-range
irrespective of details of the QCP/quantum phase:

n(t,: )Ising~T51/2

, Nt

)Alt

-2/3

|Z (Yl,:aYk,3+)’Tk,4Yk,4)|Y(tF)>

0.12

(52 _y2 )0.5

y =6=05,h_=
0.1+ N=400

©

o

[¢3]
T

Excitation density * 7423

0.02 -

2.5

|

t)+ui(t)alal, +u (t)bl b, +ug(t)al b’ +ul(t)a’, bl+uf (t)ala’, bl b', )| VAC)

-3.55

= \g\ﬁ&% y =06=0.5, hc=(1+52)0-5
= 3 N=400 |
g 3.6 *\%ﬁ
©
S 65 %&g\x
= .,
= R
1) 3%,
5 37 *&*ﬁ
E .
o 375 &*\k’*&
C EN
- — -0.5087%+ 3.0e-4

4.35 4.‘4 4.’45 4.‘5 4.’55 4.‘6 4.’65 4i7 4.’75 4.8
n (z)
Inset: —— -0.672 +0.006

© Time-dependent excitation density:

_ t—1t
n(t)= TQv/(vz+l) F ( f c)

= Scaling behavior holds throughout
entire time evolution...
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Non-equilibrium GE scaling

@ Fermionic GE also obeys scaling behavior across the entire dynamics provided that
the amount relative to the instantaneous static ground state is considered:

Cvl(vz4 t—1,
AP, y® =P, (1 ¥ (1)) =P, (¥ 0 (1)) =75 ”G( f )
Exact Instantaneous ¥, (1)=]GS(1))

time-evolved state ground state

Inset: Ising class, 02

y =6=0.5, 0.2
n(Lrss
0

0.15+

-0.2

-0.4
-2

-0.05+

N=400

_01 1 [ [ [ 1 [ [
-2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5
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Toward dynamical quantum critical scaling...

Numerical evidence: Arbitrary physical observables obey scaling behavior of the form

AO) = (¥ (1) - O, (1) =1 " F (t—ftc)

for some scaling function F and factor x depending on O, its dimension, and the control path,
e.g.d=1

AH® =H([¥ (1)) -H( ¥, (1)) =15+ (ml)f(t—Atc)

// o \\\
/ \
t | Why?

_~

Hint: For gapped systems, effect of adiabaticity-breaking at criticality can still be

accounted for by a perturbative argument... (Polkovnikov, PRB 2005: cmat/0706.0212]

H(®) =Hy+ [(9(D) — 9. )+ 9. IH; = H(9=0,) + tlgHy . H(Y)|¥ (1))=E, (1) ¥ (1)

(1) Represent time-evolved state using adiabatic perturbation theory around snapshot eigenstates:

|Yf<t>>=e”<”[| DD M (i')ﬂg“”(t)()z”|Wn<t>>+o<g'2>}

(2) Supplement description with scaling assumptions:

zZv An zZv— An
En(t)_Eo(t)z(t/TQ) F Zv | <Y/n(t)|H1|Y’o(t)>=(t/TQ) 'G v |
(t/Tg) (t/Tg)
p(E)cEY*7N [Deng, Ortiz, Viola, in progress]
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Conclusion and outlook

Entanglement is - inevitably - a relative concept...

@ GE provides a unifying framework for defining entanglement relative to any
physically relevant, distinguished subspace of observables.

© GE is directly applicable to both distinguishable and indistinguishable degrees of freedom
and relates naturally to generalized coherent state theory.

@ GE provides useful diagnostic tools for “complex” quantum systems — in particular,
quantum critical systems at equilibrium and beyond.
Are we capturing the right relativity? Only time will tell...
Meanwhile...
(1) GE and QPTs:
v Static QPTs: Validate analysis on different models/algebras?...

v Dynamical QPTs: Continue/extend analysis and develop general framework?...
v Can GE detect criticality signatures in excited states>...

(2) GE and quantum chaos:
v Can GE suggest reliable indicators for different integrability regimes>...

(3) GE and open quantum systems:

v What determines stability properties of GE underopen-system dynamics>...
v Estimation-based characterization of GE and “GE-assisted metrology™?...

Thank you for your attention!
20/20



Further reading on GE...

(1) Mathematical and geneéral:
v Barnum, Knill, Ortiz, and Viola, “Generalizations of entanglement based on coherent states
and convex sets,” PRA 68, 032308 (2003).

v Barnum, Knill, Ortiz, Somma, and Viola, “A subsystem-indepedent generalizations of
entanglement,” PRL 92, 107902 (2004).

v Viola, Barnum, Knill, Ortiz, Somma, “Entanglement beyond subsystems,”
Contemp. Math. 381, 117 (2005).

(2) Quantum phase transitions and efficient solvability:

v Somma, Ortiz, Barnum, Knill, and Viola, “Nature and measure of entanglement in quantum
phase transitions,” PRA 70, 042311 (2004).

v Somma, Barnum, Knill, and Ortiz, “Efficient solvability of Hamiltonians and limits on the
power of some quantum computational models,” PRL97, 190501 (2006).

(3) Quantum chaos and open quantum systems:

v Boixo, Viola, and Ortiz, “Generalized coherent states as preferred states of open quantum
systems,” EPL, in press (2007).

v Weinstein & Viola, “Generalized entanglement as-a framework for exploring guantum chaos,”
EPL 76, 746 (2006).

v Viola & Brown, “Generalized entanglement as a framework for exploring complex quantum
systems. Purity vs delocalization measures,”JPA 40, 8109 (2007).
L EEEEEEEEEEEEE—IIII————




