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Orders in  Matter:Invariance Principles
Understanding the properties of the Phases of Matter by 

using Symmetry Principles allows us to characterize them in 
terms of Universal behaviors

Global Symmetry Breaking Orders (e.g. Magnets)
Landau paradigm to matter classification 

in terms of an Order Parameter

The new paradigm of Topological Order (e.g. Quantum 
Hall, Gauge Theories, Spin Liquids, String-Net models) - 

no obvious broken symmetry 
What characterizes these new orders ?

Non-local Order Parameters?????
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Local order parameters

In a ferromagnet, a local expectation value is different 
for different orthogonal ground states (GSs)

Applying different boundary conditions can lead, at sufficiently 
low temperatures to spontaneous symmetry breaking

Local Measurements can distinguish the GSs

〈gα|M̂ |gα〉 #= 〈gβ |M̂ |gβ〉

〈M̂〉α #= 〈M̂〉β

T = 0

T != 0



Why TQO?

New states of matter where the 
traditional Landau paradigm fails

Topological Quantum Computation:
Hardware Fault-tolerance

Quantum simulator: Develop tools to
simulate and detect these new states 



Old Examples

Fractional Quantum Hall Liquids

Kitaev’s Toric code model

 Lattice Gauge TheoryZ2
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Concepts involved in TQO

TQO

Degeneracy

Symmetry

Fractionalization Maximal 
Strings/Branes

Entanglement



What is TQO?
Colloquially, TQO is often very loosely referred to as order whose 
GS degeneracy depends on the surface topology of the manifold 
on which the physical system is embedded.

Our working definition: Robustness

〈gα|V̂
m|gβ〉 = c δαβ , ∀ α, β ∈ S0,

Perturbation Theory:
〈gα| V̂ Ḡ0V̂ . . . Ḡ0V̂

︸ ︷︷ ︸

m factors V̂

|gβ〉 = c δαβ , ∀ α, β ∈ S0

Ḡ0 = (ε0 − H0)
−1

P̂⊥

Non-Distinguishability: Given a quasi-local operator V̂ m

Order is evident only in non-local (topological) quantities



What is the unifying physical 
principle behind TQO ?



A d-dim GLS is a group of transformations 
that leave the theory invariant such that the minimum non
empty set of fields that are changed under the symmetry

operation occupies a d-dim region

Gauge-Like-Symmetries
Given a D-dim theory:

d=0 (Gauge) d < D (Gauge-Like) d=D (Global)

d ≤ D

GdGroup:



Gauge-Like-Symmetries
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d-GLSs and Topological Phases
There is a connection between Topological Phases and the 

group generators of d-GLSs and its Topological defects

Topological defect:
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Oµ|gα〉 = |gβ〉Symmetries are linking operators:



Physical Consequences
For a D-dim system, d < D GLSs lead to 

dimensional reduction

Conservation Laws within d-dim regions: 
Additional conserved currents

Topological terms that appear in d+1 also appear in D+1

Freely propagating d-dim topological defects

d=1 soliton in the D=2 orbital compass model
(Finite Energy cost)



To Break or not to Break

From the Generalized Elitzur’s Theorem:

d=0  SSB is forbidden

Can we spontaneously break a d-GLS in a D-dim system ?

For non-       -invariant quantitiesGd

(finite-range int.)

d=1  SSB is forbidden

d=2  (continuous) SSB is forbidden
d=2  (discrete) SSB may be broken

d=2  (continuous with a gap) SSB is forbidden 
                      even at T=0

Transitions and crossovers are signaled by 
symmetry-invariant string/brane or Wilson-like loops



Fundamental Theorem 

(Z. Nussinov and G. Ortiz, cond-mat/0605316, 0702377)

Linking TQO and GLSs

Any physical system which displays T=0 TQO, and 
interactions of finite range and strength, in which all 
GSs (satisfying the non-distinguishability condition) 
can be linked by discrete d  < 2  or continuous d <3 
GLSs, has TQO at all temperatures. 

(d-GLSs with d < D can mandate the absence of SSB)



New Examples

Kugel-Khomskii Hamiltonians

Superconducting (p+ip) arrays

 Klein spin models
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(Transition metals)

(                )Sr2RuO4

(p+ip) model ↔ D=2 orbital compass model



How do we mathematically characterize TQO ?

Insufficient criteria:

Hamiltonian Spectrum: TQO is a property of states

Topological Entanglement Entropy

String/Brane Correlations: 
Long-range order of non-local operators

(Duality mappings disentangle the non-local order)

(Deviation from an Area law)



TQO is a property of States not of the Spectrum

Duality mappings: Non-local
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Kitaev’s toric code model:

Wen’s plaquette model:2 Ising chains:

(Nussinov-Ortiz 2006)
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Thermal Fragility
In TQO systems, which have a gap, 

does temperature preclude protection of information?
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Thermal Fragility
For a finite size: By Symmetry

〈Z1〉 = 〈Z2〉 = 〈X1〉 = 〈X2〉 = 0

Partition function (2 Ising chains):
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What have we done and proved?
Most significant results:

Provide a unifying framework

Fundamental Theorem: A sufficient symmetry condition 
to have TQO is that the system displays low d-dim GLSs

d-dim (d<D) GLSs lead to dimensional reduction

d-GLSs can enforce high dimensional fractionalization, 
unusual topological indices (& related Berry phases)



What have we done and proved?
The devil is not in the spectrum

General entangled systems have string (or higher 
dimensional “brane”) correlators which decay more 
slowly than the usual two-point correlators
A goal is to use the symmetry principles to engineer 
new model Hamiltonians that can  be easily realized 
experimentally. 

Thermal effects seem to impose severe restrictions on 
several current suggestions for topological quantum 
computing (Thermal fragility)



What remains to be done?

How do we characterize and classify TQO?

How do we measure TQO? Experimental probes?

Most significant questions:

Most importantly for quantum memories: Conditions 
under which TQO is protected from thermal effects?

(Entanglement entropy? Generalized entanglement?)

What are TQO states useful for?
Quantum orders vs Functionalities


