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Orders in Matter:Invariance Principles

Understanding the properties of the Phases of Matter by

using Symmetry Principles allows us to characterize them in
terms of Universal behaviors

s Global Symmetry Breaking Orders (e.g. Magnets)

Landau paradigm to matter classification
in terms of an Order Parameter

s The new paradigm of Topological Order (e.g. Quantum
Hall, Gauge Theories, Spin Liquids, String-Net models) -

no obvious broken symmetry

What characterizes these new orders ?
Non-local Order Parameters????? ILM




Symmetry and Phase Transitions
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Local order parameters

In a ferromagnet, a local expectation value is different
for different orthogonal ground states (GSs)

(9o |M|ga) # (95| M|gg) T =0

Applying different boundary conditions can lead, at sufficiently
low temperatures to spontaneous symmetry breaking
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Local Measurements can distinguish the GGSs
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Why TQO?

B New states of matter where the &

traditional Landau paradigm fails

® Topological Quantum Computation:

(c)
Hardware Fault-tolerance

m Quantum simulator: Develop tools to gap]

simulate and detect these new states
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Old Examples

® Fractional Quantum Hall Liquids

B Kitaev’s Toric code model
H=-) A,—-) B,
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m /o Lattice Gauge Theory H = — Z B,
p

B Some spin liquids




Concepts involved in TQO
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What is TQO?
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Order is evident only in non-local (topological) quantities

Our working definition: Robustness

A

Non-Distinguishability: Given a quasi-local operator V"

Perturbation Theory:
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What is the unitying physical
principle behind TQO ?




Gauge-Like-Symmetries

Given a D-dim theory:

A d-dim GLS is a group of transformations
that leave the theory invariant such that the minimum non

empty set of fields that are changed under the symmetry
operation occupies a d-dim region

a< D

d=0 (Gauge) d < D (Gauge-Like) d=D (Global)

Group: Q d
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Gauge-Like-Symmetries D = 2

d=0 (Ising Gauge Theory)
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d=1 (Orbital Compass Model)
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d-GLSs and 'Topological Phases

There is a connection between Topological Phases and the
group generators of d-GLSs and its Topological defects
d=1 (D=2 Orbital Compass Model)  C,: closed path
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Symmetries are linking operators: O, Go) = |98)

L7 & & Topological defect: (. : open path
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Physical Consequences

For a D-dim system, d< D GLSs lead to
dimensional reduction

m Conservation Laws within 4-dim regions:
Additional conserved currents

® Topological terms that appear in d+1 also appear in D+1

m Freely propagating 4-dim topological defects
W A A
I S d=1 soliton in the D=2 orbital compass model

E (Finite Energy cost)
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To Break or not to Break

Can we spontaneously break a /~-GLS in a D-dim system ?

From the Generalized Elitzur’s Theorem: (finite-range int.)

For non- ¢ 4 -1nvariant quantities

m 4=-0 SSB is forbidden

m d=1 SSB is forbidden

m =2 (continuous) SSB is forbidden
d=2 (discrete) SSB may be broken

m 4=2 (continuous with a gap) SSB is forbidden
even at 1=0




Fundamental Theorem

Linking TQO and GLSs

(Z. Nussinov and G. Ortiz, cond-mat/0605316, 0702377)

Any physical system which displays 7=0 TQO, and

interactions of finite range and strength, in which all

GSs (satisfying the non-distinguishability condition)
can be linked by discrete d < 2 or continuous 4 <3

GLSs, has TQO at all temperatures.

(d-GLSs with d < D can mandate the absence of SSB)

il




New Examples

—

m Kugel-Khomskii Hamiltonians 0< *
(Transition metals) >
e o
@
® Superconducting (p+ip) arrays 4 X
( SI‘Q RU.O4 )

(p+ip) model <« D=2 orbital compass model

® Klein spin models




How do we mathematically characterize TQO ?

Insufficient criteria:

® Hamiltonian Spectrum: TQO is a property of states
(Duality mappings disentangle the non-local order)

m Topological Entanglement Entropy

(Deviation from an Area law)

m String/Brane Correlations:
[.ong-range order of non-local operators




TQO is a property of States not of the Spectrum
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Duality mappings: Non-local
(Identical spectra)

2 Ising chains: Wen’s plaquette model:
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Thermal Fragility

In TQO systems, which have a gap,
does temperature preclude protection of information?
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Thermal Fragility

For a finite size: By Symmetry
(Z1) = (Z2) = (X1) = (X2) =0
Partition function (2 Ising chains):
Z = tr|exp[~B(H — 3 (haiX; + bz s2:))]|

i=1,2
= [(2cosh 3)™ + (2sinh 8)"*]” cosh Bh; cosh Bhs

hi = /b2 + B2,
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What have we done and proved?
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Most significant results:

® Provide a unifying framework

m Fundamental Theorem: A sufficient symmetry condition

to have TQO is that the system displays low d-dim GLSs
m 7-dim (@d<D) GLSs lead to dimensional reduction

m d-GLSs can enforce high dimensional fractionalization,
unusual topological indices (& related Berry phases)




What have we done and proved?
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® The devil is not in the spectrum

m Thermal effects seem to impose severe restrictions on

several current suggestions for topological quantum
computing (Thermal fragility)

m General entangled systems have string (or higher
dimensional “brane”) correlators which decay more
slowly than the usual two-point correlators

m A goal is to use the symmetry principles to engineer
new model Hamiltonians that can be easily realized

experimentally:.




What remains to be done?
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Most significant questions:

® How do we characterize and classity TQO?
(Entanglement entropy? Generalized entanglement?)

® How do we measure TQO? Experimental probes?

m Most importantly for quantum memories: Conditions
under which TQO is protected from thermal eftects?

m What are TQO states useful for?
Quantum orders vs Functionalities




